Noncommutative Geometry and Conformal Geometry: Local Index Formula and Conformal Invariants (joint work with Hang Wang)

Raphaël Ponge

Seoul National University & UC Berkeley

November 1, 2014

1/31

Main Results

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ○

Main Results (RP+HW)

• Local index formula in conformal-diffeomorphism invariant geometry.

Main Results (RP+HW)

- Local index formula in conformal-diffeomorphism invariant geometry.
- Construction of a new class of conformal invariants.

References

 RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv by next week.

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. III. Poincaré duality and Vafa-Witten inequality. arXiv:1310.6138.

Conformal Geometry

Conformal Geometry

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Group Actions on Manifolds

If G is an arbitrary group of diffeomorphisms of a manifold M, then M/G need not be Hausdorff

If G is an arbitrary group of diffeomorphisms of a manifold M, then M/G need not be Hausdorff (unless G acts freely and properly).

If G is an arbitrary group of diffeomorphisms of a manifold M, then M/G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,

$$\begin{split} C^{\infty}_c(M) \rtimes G &= \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C^{\infty}_c(M) \right\}, \\ u^*_{\phi} &= u^{-1}_{\phi} = u_{\phi^{-1}}, \qquad u_{\phi} f = (f \circ \phi^{-1}) u_{\phi}. \end{split}$$

If G is an arbitrary group of diffeomorphisms of a manifold M, then M/G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,

$$\begin{split} C^{\infty}_c(M) \rtimes G &= \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C^{\infty}_c(M) \right\}, \\ u^*_{\phi} &= u^{-1}_{\phi} = u_{\phi^{-1}}, \qquad u_{\phi} f = (f \circ \phi^{-1}) u_{\phi}. \end{split}$$

Proposition (Green)

If G acts freely and properly, then $C_c^{\infty}(M/G)$ is Morita equivalent to $C_c^{\infty}(M) \rtimes G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^1 by

$$k.z := e^{2ik\pi\theta}z \qquad \forall z \in S^1 \ \forall k \in \mathbb{Z}.$$

Example

Given $heta \in \mathbb{R}$, let \mathbb{Z} act on S^1 by

$$k.z := e^{2ik\pi\theta}z \qquad \forall z \in S^1 \ \forall k \in \mathbb{Z}.$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^1 .

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^1 by

$$k.z := e^{2ik\pi\theta}z \qquad \forall z \in S^1 \; \forall k \in \mathbb{Z}.$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^1 .

The crossed-product algebra $\mathcal{A}_{\theta} := C^{\infty}(S^1) \rtimes_{\theta} \mathbb{Z}$ is generated by two operators U and V such that

$$U^* = U^{-1}, \qquad V^* = V^{-1}, \qquad VU = e^{2i\pi\theta}UV.$$

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^1 by

$$k.z := e^{2ik\pi\theta}z \qquad \forall z \in S^1 \; \forall k \in \mathbb{Z}.$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^1 .

The crossed-product algebra $\mathcal{A}_{\theta} := C^{\infty}(S^1) \rtimes_{\theta} \mathbb{Z}$ is generated by two operators U and V such that

$$U^* = U^{-1}, \qquad V^* = V^{-1}, \qquad VU = e^{2i\pi\theta}UV.$$

Remark

The algebra \mathcal{A}_{θ} is called the *noncommutative torus*.

Classical	NCG
-----------	-----

・ロト ・母 ト ・目 ト ・目 ・ うへの

Classical	NCG
Manifold <i>M</i>	

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle <i>E</i> over <i>M</i>	$ extsf{Projective Module } \mathcal{E} extsf{ over } \mathcal{A} \ \mathcal{E} = e \mathcal{A}^q, \ e \in M_q(\mathcal{A}), \ e^2 = e$

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle E over M	$egin{aligned} & ext{Projective Module } \mathcal{E} ext{ over } \mathcal{A} \ \mathcal{E} &= e \mathcal{A}^q, \ e \in M_q(\mathcal{A}), \ e^2 = e \end{aligned}$
$ind \mathcal{P}_{\nabla^{\mathcal{E}}}$	$ind D_\nabla^{\varepsilon}$

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle <i>E</i> over <i>M</i>	$\begin{array}{l} {\sf Projective \ Module \ } {\cal E} \ {\sf over} \ {\cal A} \\ {\cal E} = e {\cal A}^q, \ \ e \in M_q({\cal A}), \ e^2 = e \end{array}$
$ind {\not\!\!\!D}_{\nabla^E}$	$ind D_{\nabla}\varepsilon$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle <i>E</i> over <i>M</i>	Projective Module ${\mathcal E}$ over ${\mathcal A}$ ${\mathcal E}=e{\mathcal A}^q, \ e\in M_q({\mathcal A}), \ e^2=e$
$ind \not\!$	$ind\ D_\nabla \varepsilon$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula ${ m ind}oldsymbol{B}_{ abla^{E}}=\int \hat{A}(R^{M})\wedge { m Ch}(F^{E})$	$Connes ext{-}Chern\;Character\;Ch(D)\ ind\; D_{ abla}arepsilon=\langleCh(D),Ch(\mathcal{E}) angle$

・ロト ・回ト ・ヨト ・ヨト

Classical	NCG
Manifold <i>M</i>	Spectral Triple ($\mathcal{A}, \mathcal{H}, D$)
Vector Bundle <i>E</i> over <i>M</i>	$egin{array}{lll} { m Projective} \ { m Module} \ {\cal E} \ { m over} \ {\cal A} \ {\cal E} = e {\cal A}^q, \ \ e \in M_q({\cal A}), \ e^2 = e \end{array}$
$ind \not\!$	$ind\ D_\nabla^\varepsilon$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula ${ m ind} otin_{ abla^{ar{E}}} = \int \hat{A}(R^M) \wedge { m Ch}(F^{ar{E}})$	$Connes ext{-Chern Character Ch}(D) \ ind \ D_{ abla}arepsilon = \langle Ch(D), Ch(\mathcal{E}) angle$
Characteristic Classes	Cyclic Cohomology for Hopf Algebras
	《曰》《國》《王》《王》 된 신의

7/31

Spectral Triples

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

• A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - O A selfadjoint unbounded operator <math>D on \mathcal{H} such that

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - A selfadjoint unbounded operator D on H such that
 D maps H[±] to H[∓].

イロン 不同 とくほう イロン
A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
- O A selfadjoint unbounded operator <math>D on \mathcal{H} such that

$$oldsymbol{0}$$
 D maps \mathcal{H}^\pm to $\mathcal{H}^\mp.$

2
$$(D \pm i)^{-1}$$
 is compact.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
- (A selfadjoint unbounded operator D on \mathcal{H} such that

(a)

8/31

()
$$D$$
 maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .

2
$$(D \pm i)^{-1}$$
 is compact.

(D, a] is bounded for all $a \in A$.

Example

9/31

Example

 (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Then
$$(C^{\infty}(M), L^{2}(M, \$), \mathcal{P}_{g})$$
 is a spectral triple.

Example

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Then
$$(C^{\infty}(M), L^{2}(M, \$), \mathcal{P}_{g})$$
 is a spectral triple.

Remark

We also get spectral triples by taking

- $\mathcal{H} = L^2(M, \Lambda^{\bullet}T^*M)$ and $D = d + d^*$.
- $\mathcal{H} = L^2(M, \Lambda^{0,\bullet} T^*_{\mathbb{C}} M)$ and $D = \overline{\partial} + \overline{\partial}^*$ (when M is a complex manifold).

Diffeomorphism-Invariant Geometry

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 → のへの

Diffeomorphism-Invariant Geometry

Setup

- M smooth manifold.
- G = Diff(M) full group diffeomorphism group of M.

Fact

The only G-invariant geometric structure of M is its manifold structure.

Theorem (Connes-Moscovici '95)

There is a spectral triple $(C_c^{\infty}(P) \rtimes G, L^2(P, \Lambda^{\bullet}T^*P), D)$, where

- $P = \left\{g_{ij}dx^i \otimes dx^j; (g_{ij}) > 0\right\}$ is the metric bundle of M.
- D is a "mixed-degree" signature operator, so that

$$D|D| = d_H + d_H^* + d_V d_V^* - d_V^* d_V.$$

イロト イポト イヨト イヨト

Example

• (M^n, g) compact Riemannian spin manifold (n even) with spinor bundle $\$ = \$^+ \oplus \$^-$.

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \mathcal{S})$.

Example

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Consider a conformal change of metric,

$$\hat{g}=k^{-2}g,\qquad k\in C^\infty(M),\ k>0.$$

Example

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Consider a conformal change of metric,

$$\hat{g}=k^{-2}g,\qquad k\in C^\infty(M),\ k>0.$$

Then the Dirac spectral triple $(C^{\infty}(M), L^2_{\hat{g}}(M, \$), \mathcal{P}_{\hat{g}})$ is unitarily equivalent to $(C^{\infty}(M), L^2_g(M, \$), \sqrt{k}\mathcal{P}_g\sqrt{k})$

イロト 不得 トイヨト イヨト 二日

Example

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Consider a conformal change of metric,

$$\hat{g}=k^{-2}g,\qquad k\in C^\infty(M),\ k>0.$$

Then the Dirac spectral triple $(C^{\infty}(M), L^2_{\hat{g}}(M, \$), \mathcal{P}_{\hat{g}})$ is unitarily equivalent to $(C^{\infty}(M), L^2_g(M, \$), \sqrt{k}\mathcal{P}_g\sqrt{k})$ (i.e., the spectral triples are intertwined by a unitary operator).

Twisted Spectral Triples

<ロ> < ()</p>

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - O A selfadjoint unbounded operator <math>D on \mathcal{H} such that

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - A selfadjoint unbounded operator D on H such that
 D maps H[±] to H[∓].

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - O A selfadjoint unbounded operator <math>D on \mathcal{H} such that

イロト イポト イヨト イヨト

$$oldsymbol{0}$$
 D maps \mathcal{H}^\pm to $\mathcal{H}^\mp.$

($D \pm i$)⁻¹ is compact.

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
 - A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
 - **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
 - **③** A selfadjoint unbounded operator D on \mathcal{H} such that

()
$$D$$
 maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .

2
$$(D \pm i)^{-1}$$
 is compact.

(D,a] is bounded for all $a \in A$.

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** An involutive algebra \mathcal{A} represented in \mathcal{H} .
- **③** A selfadjoint unbounded operator D on \mathcal{H} such that

イロン 不同 とくほう イロン

- **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
- ($D \pm i$)⁻¹ is compact.
- **3** is bounded for all $a \in A$.

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- An involutive algebra A represented in H together with an automorphism σ : A → A such that σ(a)* = σ⁻¹(a*) for all a ∈ A.
- **③** A selfadjoint unbounded operator D on \mathcal{H} such that
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ($D \pm i$)⁻¹ is compact.
 - **(3)** is bounded for all $a \in A$.

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- An involutive algebra A represented in H together with an automorphism σ : A → A such that σ(a)* = σ⁻¹(a*) for all a ∈ A.
- **③** A selfadjoint unbounded operator D on \mathcal{H} such that

$$old D$$
 maps \mathcal{H}^\pm to $\mathcal{H}^\mp.$

- ($D \pm i$)⁻¹ is compact.
- $I D, a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in A$.

Proposition (Connes-Moscovici)

Proposition (Connes-Moscovici)

Consider the following:

Proposition (Connes-Moscovici)

Consider the following:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

Proposition (Connes-Moscovici)

Consider the following:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in A$ with associated inner automorphism $\sigma(a) = k^2 a k^{-2}$, $a \in A$.

Proposition (Connes-Moscovici)

Consider the following:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in A$ with associated inner automorphism $\sigma(a) = k^2 a k^{-2}$, $a \in A$.

Then $(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}$ is a twisted spectral triple.

Pseudo-Inner Twistings

Proposition (RP+HW)

<ロ > < 部 > < 注 > く 注 > 注 の < で 14/31

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

Proposition (RP+HW)

Consider the following data:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

• A positive even operator $\omega = \begin{pmatrix} \omega^+ & 0 \\ 0 & \omega^- \end{pmatrix} \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{\pm}(a) = k^{\pm}a(k^{\pm})^{-1}$ associated positive elements $k^{\pm} \in \mathcal{A}$ in such way that

$$k^+k^- = k^-k^+$$
 and $\omega^\pm a = \sigma^\pm(a)\omega^\pm$ $orall a \in \mathcal{A}.$
Consider the following data:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

• A positive even operator $\omega = \begin{pmatrix} \omega^+ & 0 \\ 0 & \omega^- \end{pmatrix} \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{\pm}(a) = k^{\pm}a(k^{\pm})^{-1}$ associated positive elements $k^{\pm} \in \mathcal{A}$ in such way that

$$k^+k^- = k^-k^+$$
 and $\omega^{\pm}a = \sigma^{\pm}(a)\omega^{\pm}$ $\forall a \in \mathcal{A}.$

Set $k = k^+k^-$ and $\sigma(a) = kak^{-1}$.

Consider the following data:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

• A positive even operator $\omega = \begin{pmatrix} \omega^+ & 0 \\ 0 & \omega^- \end{pmatrix} \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{\pm}(a) = k^{\pm}a(k^{\pm})^{-1}$ associated positive elements $k^{\pm} \in \mathcal{A}$ in such way that

$$k^+k^-=k^-k^+$$
 and $\omega^\pm a=\sigma^\pm(a)\omega^\pm$ $orall a\in\mathcal{A}.$

Set $k = k^+k^-$ and $\sigma(a) = kak^{-1}$. Then $(\mathcal{A}, \mathcal{H}, \omega D\omega)_{\sigma}$ is a twisted spectral triple.

Consider the following data:

• An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

• A positive even operator $\omega = \begin{pmatrix} \omega^+ & 0 \\ 0 & \omega^- \end{pmatrix} \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{\pm}(a) = k^{\pm}a(k^{\pm})^{-1}$ associated positive elements $k^{\pm} \in \mathcal{A}$ in such way that

$$k^+k^-=k^-k^+$$
 and $\omega^\pm a=\sigma^\pm(a)\omega^\pm$ $orall a\in\mathcal{A}.$

Set $k = k^+k^-$ and $\sigma(a) = kak^{-1}$. Then $(\mathcal{A}, \mathcal{H}, \omega D\omega)_{\sigma}$ is a twisted spectral triple.

Example (RP+HW)

Connes-Tretkoff's twisted spectral triples over NC tori associated to conformal weights.

• Conformal Dirac spectral triple (Connes-Moscovici).

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).
- Twisted spectral triples associated to some quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

Connections over a Spectral Triple

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - わぬ()

• $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- ${\mathcal E}$ finitely generated projective (right) module over ${\mathcal A}$.

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Space of differential 1-forms:

$$\Omega^1_D(\mathcal{A}):=\mathsf{Span}\{\mathit{adb};\ \mathit{a},\mathit{b}\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where db := [D, b].

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Space of differential 1-forms:

$$\Omega^1_D(\mathcal{A}):=\mathsf{Span}\{\mathit{adb};\ \mathit{a},\mathit{b}\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where db := [D, b].

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Space of differential 1-forms:

$$\Omega^1_D(\mathcal{A}):=\mathsf{Span}\{\mathit{adb};\ \mathit{a},\mathit{b}\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where db := [D, b].

Definition

A connection on a \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^1_D(\mathcal{A})$ such that

$$abla^{\mathcal{E}}(\xi \mathsf{a}) = \xi \otimes \mathsf{d}\mathsf{a} + ig(
abla^{\mathcal{E}} \xi ig) \mathsf{a} \qquad orall \mathsf{a} \in \mathcal{A} \ orall \xi \in \mathcal{E}.$$

17 / 31

Setup/Notation

• $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a *twisted* spectral triple.

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a *twisted* spectral triple.
- ${\mathcal E}$ finitely generated projective (right) module over ${\mathcal A}$.

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a *twisted* spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Space of *twisted* differential 1-forms:

$$\Omega^1_{D,\sigma}(\mathcal{A})=\mathsf{Span}\{\mathit{ad}_\sigma b; \; \mathit{a},b\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a *twisted* spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Space of *twisted* differential 1-forms:

$$\Omega^1_{D,\sigma}(\mathcal{A})=\mathsf{Span}\{\mathit{a} {d_\sigma} b; \; \mathit{a}, b\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),$$

where
$$d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$$
.

Definition

A σ -translate of \mathcal{E} is a finitely generated projective module \mathcal{E}^{σ} together with a linear isomorphism $\sigma^{\mathcal{E}}: \mathcal{E} \to \mathcal{E}^{\sigma}$ such that

$$\sigma^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi)\sigma(a) \qquad \forall \xi \in \mathcal{E} \ \forall a \in \mathcal{A}.$$

σ -Connections

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \frac{\mathcal{E}^{\sigma}}{\mathcal{E}^{\sigma}} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

 $\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \frac{\mathcal{E}^{\sigma}}{\mathcal{E}^{\sigma}} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Example

If
$$\mathcal{E}=e\mathcal{A}^q$$
 with $e=e^2\in M_q(\mathcal{A})$, then

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \frac{\mathcal{E}^{\sigma}}{\mathcal{E}^{\sigma}} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Example

If
$$\mathcal{E} = e\mathcal{A}^q$$
 with $e = e^2 \in M_q(\mathcal{A})$, then

•
$$\mathcal{E}^{\sigma} = \sigma(e)\mathcal{A}^{q}$$
 is a σ -translate.

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \frac{\mathcal{E}^{\sigma}}{\mathcal{E}^{\sigma}} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Example

If
$$\mathcal{E} = e\mathcal{A}^q$$
 with $e = e^2 \in M_q(\mathcal{A})$, then

1
$$\mathcal{E}^{\sigma}=\sigma(e)\mathcal{A}^{q}$$
 is a σ -translate.

2 It is equipped with the *Grassmanian* σ -connection,

$$abla_0^{\mathcal{E}} = (\sigma(e) \otimes 1) d_{\sigma}.$$

Coupling with σ -connections

19/31

The datum of σ -connection on $\mathcal E$ defines a coupled operator,

 $D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H},$

The datum of σ -connection on $\mathcal E$ defines a coupled operator,

$$D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H},$$

of the form,

$$\mathcal{D}_{
abla}arepsilon = egin{pmatrix} 0 & D_{
abla}^- arepsilon \\ D_{
abla}^+ & 0 \end{pmatrix},$$

where $D_{\nabla^{\mathcal{E}}}^{\pm}: \mathcal{E} \otimes \text{dom } D^{\pm} \to \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

The datum of σ -connection on $\mathcal E$ defines a coupled operator,

$$D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H},$$

of the form,

$$\mathcal{D}_{
abla}arepsilon = egin{pmatrix} 0 & D_{
abla}^- arepsilon \ D_{
abla}arepsilon arepsilon \ D_{
abla}arepsilon \ arepsilon \ arepsilo$$

where $D_{\nabla^{\mathcal{E}}}^{\pm}: \mathcal{E} \otimes \text{dom } D^{\pm} \to \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $(C^{\infty}(M), L_g^2(M), \$, \not\!\!D_g)$ and $\mathcal{E} = C^{\infty}(M, E)$, it can be shown that

The datum of σ -connection on $\mathcal E$ defines a coupled operator,

$$D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H},$$

of the form,

$$\mathcal{D}_{
abla}arepsilon = egin{pmatrix} 0 & D_{
abla}^- arepsilon \ D_{
abla}arepsilon arepsilon \ D_{
abla}arepsilon \ arepsilon \ arepsilo$$

where $D_{\nabla^{\mathcal{E}}}^{\pm}: \mathcal{E} \otimes \text{dom } D^{\pm} \to \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $(C^{\infty}(M), L^2_g(M), \$, \not\!\!D_g)$ and $\mathcal{E} = C^{\infty}(M, E)$, it can be shown that

• Any connection ∇^{E} on E defines a connection on \mathcal{E} .

The datum of σ -connection on $\mathcal E$ defines a coupled operator,

$$D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H},$$

of the form,

$$\mathcal{D}_{
abla}arepsilon = egin{pmatrix} 0 & D_{
abla}^- arepsilon \ D_{
abla}arepsilon arepsilon \ D_{
abla}arepsilon \ arepsilon \ arepsilo$$

where $D_{\nabla^{\mathcal{E}}}^{\pm}: \mathcal{E} \otimes \text{dom } D^{\pm} \to \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $(C^{\infty}(M), L^2_g(M), \$, \not\!\!D_g)$ and $\mathcal{E} = C^{\infty}(M, E)$, it can be shown that

- Any connection ∇^{E} on E defines a connection on \mathcal{E} .
- $\ensuremath{ \bullet} \ensuremath{ \bullet} \ensuremath$

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$\mathsf{ind} \ D_{
abla}arepsilon:=rac{1}{2}\left(\mathsf{ind} \ D^+_{
abla}arepsilon-\mathsf{ind} \ D^-_{
abla}arepsilon
ight).$$

ヘロン ヘロン ヘビン ヘビン

æ

20/31

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is $\operatorname{ind} D_{\nabla^{\mathcal{E}}} := \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right).$ where $\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{\pm} = \operatorname{dim} \operatorname{ker} D_{\nabla^{\mathcal{E}}}^{\pm} - \operatorname{dim} \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}.$

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$\operatorname{\mathsf{ind}} D_{\nabla^{\mathcal{E}}} := rac{1}{2} \left(\operatorname{\mathsf{ind}} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{\mathsf{ind}} D_{\nabla^{\mathcal{E}}}^- \right).$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}$.

Remark

When $\sigma={\rm id},$ and in all the main examples with $\sigma\neq{\rm id},$ we have ${\rm ind}\, D_{\nabla}{}^{\varepsilon}={\rm ind}\, D_{\nabla}^{+}{}^{\varepsilon}.$

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} := rac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^-
ight).$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}$.

Remark

When $\sigma={\rm id},$ and in all the main examples with $\sigma\neq{\rm id},$ we have ${\rm ind}\, D_{\nabla^{\mathcal E}}={\rm ind}\, D_{\nabla^{\mathcal E}}^+.$

Proposition (Connes-Moscovici, RP+HW)

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} := rac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^-
ight).$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}$.

Remark

When $\sigma={\rm id},$ and in all the main examples with $\sigma\neq{\rm id},$ we have ${\rm ind}\, D_{\nabla^{\mathcal E}}={\rm ind}\, D_{\nabla^{\mathcal E}}^+.$

Proposition (Connes-Moscovici, RP+HW)

() ind $D_{\nabla \mathcal{E}}$ depends only on the K-theory class of \mathcal{E} .

20/31

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} := rac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^-
ight).$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}.$

Remark

When $\sigma={\rm id},$ and in all the main examples with $\sigma\neq{\rm id},$ we have ${\rm ind}\, D_{\nabla^{\mathcal E}}={\rm ind}\, D^+_{\nabla^{\mathcal E}}.$

Proposition (Connes-Moscovici, RP+HW)

- **1** ind $D_{\nabla \mathcal{E}}$ depends only on the K-theory class of \mathcal{E} .
- 2 There is a unique additive map $\operatorname{ind}_{D,\sigma} : K_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z}$ so that

 $\operatorname{ind}_{D}[\mathcal{E}] = \operatorname{ind} D_{\nabla^{\mathcal{E}}} \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$
Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$.

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$.

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \operatorname{Tr} \left\{ \gamma(D^{-1}[D, e]_{\sigma})^{2k} \right\},$$

where $\gamma = \mathrm{id}_{\mathcal{H}^+} - \mathrm{id}_{\mathcal{H}^-}$.

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \operatorname{Tr} \left\{ \gamma(D^{-1}[D, e]_{\sigma})^{2k} \right\},$$

where $\gamma = \mathrm{id}_{\mathcal{H}^+} - \mathrm{id}_{\mathcal{H}^-}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable.

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = rac{1}{2} \operatorname{Tr} \left\{ \gamma(D^{-1}[D, e]_{\sigma})^{2k}
ight\},$$

where $\gamma = \operatorname{id}_{\mathcal{H}^+} - \operatorname{id}_{\mathcal{H}^-}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $Ch(D)_{\sigma} \in HP^{0}(\mathcal{A})$

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \operatorname{Tr} \left\{ \gamma(D^{-1}[D, e]_{\sigma})^{2k} \right\},$$

where $\gamma = \operatorname{id}_{\mathcal{H}^+} - \operatorname{id}_{\mathcal{H}^-}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $Ch(D)_{\sigma} \in HP^{0}(\mathcal{A})$, called Connes-Chern character,

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \operatorname{Tr} \left\{ \gamma(D^{-1}[D, e]_{\sigma})^{2k} \right\},$$

where $\gamma = \mathsf{id}_{\mathcal{H}^+} - \mathsf{id}_{\mathcal{H}^-}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $Ch(D)_{\sigma} \in HP^{0}(\mathcal{A})$, called Connes-Chern character, such that

ind
$$D_{\nabla^{\mathcal{E}}} = \langle \mathsf{Ch}(D)_{\sigma}, \mathsf{Ch}(\mathcal{E}) \rangle \quad \forall (\mathcal{E}, \nabla^{\mathcal{E}}),$$

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then, for all $k \geq \frac{1}{2}p$,

ind
$$D_{\nabla^{\mathcal{E}}} = rac{1}{2} \operatorname{Tr} \left\{ \gamma (D^{-1}[D, e]_{\sigma})^{2k} \right\},$$

where $\gamma = \mathsf{id}_{\mathcal{H}^+} - \mathsf{id}_{\mathcal{H}^-}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $Ch(D)_{\sigma} \in HP^{0}(\mathcal{A})$, called Connes-Chern character, such that

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \langle \operatorname{Ch}(D)_{\sigma}, \operatorname{Ch}(\mathcal{E}) \rangle \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}),$$

where $Ch(\mathcal{E})$ is the Chern character in periodic cyclic homology.

1/31

▲ロ▶ ▲舂▶ ▲巻▶ ▲巻▶ 「巻」 釣ぬ()

Setup • M^n is a compact spin oriented manifold (*n* even). **2** C is a conformal structure on M.

Setup

- M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- **③** *G* is a group of conformal diffeomorphisms preserving C.

Setup

- M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- S G is a group of conformal diffeomorphisms preserving C. Thus, given any metric g ∈ C and $\phi \in G$,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\ k_\phi>0.$

Setup

- M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- G is a group of conformal diffeomorphisms preserving C. Thus, given any metric g ∈ C and φ ∈ G,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\;k_\phi>0.$

• $C^{\infty}(M) \rtimes G$ is the crossed-product algebra, i.e.,

$$C^{\infty}(M) \rtimes G = \left\{ \sum f_{\phi} u_{\phi}; f_{\phi} \in C^{\infty}_{c}(M) \right\},$$
$$u_{\phi}^{*} = u_{\phi}^{-1} = u_{\phi^{-1}}, \qquad u_{\phi}f = (f \circ \phi^{-1})u_{\phi}.$$

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi = k_{\phi}^{-\frac{n}{2}}\phi_{*}\xi \quad \forall \xi \in L^{2}_{g}(M, \$)$$

・ロン ・四 と ・ ヨ と ・ ヨ と ・

23/31

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi = k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi \in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi=k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi\in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi=k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi\in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

1 The Dirac operator \mathcal{D}_g associated to g.

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi=k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi\in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

- The Dirac operator \mathcal{D}_g associated to g.
- 2 The representation $fu_{\phi} \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^{2}_{g}(M, \$)$.

3 / 31

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_\phi: L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi = k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi \in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

- The Dirac operator \mathcal{D}_g associated to g.
- **2** The representation $fu_{\phi} \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^{2}_{g}(M, \$)$.
- **3** The automorphism $\sigma_g(fu_\phi) := k_\phi^{-1} fu_\phi$.

3/31

Conformal Connes-Chern Character

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�()

Conformal Connes-Chern Character

Theorem (RP+HW)

• The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g} \in HP^0(C^{\infty}(M) \rtimes G)$ is an invariant of the conformal class C.

Theorem (RP+HW)

- The Connes-Chern character Ch(𝒫_g)_{σg} ∈ HP⁰(C[∞](M) ⋊ G) is an invariant of the conformal class C.
- For any even cyclic homology class η ∈ HP₀(C[∞](M) ⋊ G), the pairing,

 $\langle \mathsf{Ch}(\mathcal{D}_g)_{\sigma_g}, \eta \rangle,$

is a scalar conformal invariant.

Theorem (RP+HW)

- The Connes-Chern character Ch(𝒫_g)_{σg} ∈ HP⁰(C[∞](M) ⋊ G) is an invariant of the conformal class C.
- For any even cyclic homology class η ∈ HP₀(C[∞](M) ⋊ G), the pairing,

 $\langle \mathsf{Ch}(\mathcal{D}_g)_{\sigma_g}, \eta \rangle,$

is a scalar conformal invariant.

Definition

The conformal Connes-Chern character $Ch(\mathcal{C}) \in HP^0(C^{\infty}(M) \rtimes G)$ is the Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g}$ for any metric $g \in \mathcal{C}$.

Computation of Ch(C)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a G-invariant metric.

・ロン ・部 と ・ ヨ と ・ ヨ と …

25/31

Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a G-invariant metric.

Fact

If
$$g \in C$$
 is G-invariant, then $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ is an ordinary spectral triple (i.e., $\sigma_g = 1$).

Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a G-invariant metric.

Fact

If
$$g \in C$$
 is G-invariant, then $(C^{\infty}(M) \rtimes G, L^2_g(M, \$), \mathcal{D}_g)_{\sigma_g}$ is an ordinary spectral triple (i.e., $\sigma_g = 1$).

Consequence

When C is non-flat, we are reduced to the computation of the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)$, where G is a group of isometries.

Computation of Ch(C)

Remark

26/31

• When G is a group of isometries, the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L^2_g(M, \$), \mathcal{D}_g)$ is represented by the CM cocycle.

- When G is a group of isometries, the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)$ is represented by the CM cocycle.
- The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.

- When G is a group of isometries, the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)$ is represented by the CM cocycle.
- The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.
- We produce a new proof of LEIT that allows us to compute the CM cocyle in the same shot.

- When G is a group of isometries, the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L^2_g(M, \$), \mathcal{D}_g)$ is represented by the CM cocycle.
- The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.
- We produce a new proof of LEIT that allows us to compute the CM cocyle in the same shot.
- This approach was various other applications (equivariant JLO cocycle, equivariant eta cochain, Yong Wang's papers).

Local Index Formula in Conformal Geometry

Setup
Setup

• C is a nonflat conformal structure on M.

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

• M^{ϕ} is the fixed-point set of ϕ ;

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

M^φ is the fixed-point set of φ; this is a disconnected sums of submanifolds,

$$M^{\phi} = \bigsqcup M^{\phi}_a$$
, dim $M^{\phi}_a = a$.

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

M^φ is the fixed-point set of φ; this is a disconnected sums of submanifolds,

$$M^{\phi} = \bigsqcup M^{\phi}_a$$
, dim $M^{\phi}_a = a$

• $\mathcal{N}^{\phi} = (TM^{\phi})^{\perp}$ is the normal bundle (vector bundle over M^{ϕ}).

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

• M^{ϕ} is the fixed-point set of ϕ ; this is a disconnected sums of submanifolds,

$$M^{\phi} = igsqcup M^{\phi}_{a}$$
, dim $M^{\phi}_{a} = a$

- $\mathcal{N}^{\phi} = (TM^{\phi})^{\perp}$ is the normal bundle (vector bundle over M^{ϕ}).
- Over M^{ϕ} , with respect to $TM_{|M^{\phi}} = TM^{\phi} \oplus \mathcal{N}^{\phi}$, there are decompositions,

$$\phi' = \left(\begin{array}{cc} 1 & 0 \\ 0 & \phi'_{|\mathcal{N}^{\phi}} \end{array}\right), \qquad \nabla^{TM} = \nabla^{TM^{\phi}} \oplus \nabla^{\mathcal{N}^{\phi}}.$$

Theorem (RP + HW)

For any G-invariant metric $g \in C$,

For any G-invariant metric $g \in C$, the conformal Connes-Chern character $Ch(\not \! D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

For any G-invariant metric $g \in C$, the conformal Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 U_{\phi_0}, \cdots, f^{2m} U_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{a} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^{2m},$$

For any G-invariant metric $g \in C$, the conformal Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 U_{\phi_0}, \cdots, f^{2m} U_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{a} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^{2m},$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2m}$,

For any G-invariant metric $g \in C$, the conformal Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 U_{\phi_0}, \cdots, f^{2m} U_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{a} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^{2m},$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2m}$, and $\tilde{f}^j := f^j \circ \phi_0^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$,

For any G-invariant metric $g \in C$, the conformal Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 U_{\phi_0}, \cdots, f^{2m} U_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{a} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^{2m},$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2m}$, and $\tilde{f}^j := f^j \circ \phi_0^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$, and

$$egin{aligned} \hat{A}\left(R^{\mathcal{T}M^{\phi}}
ight) &:= \det^{rac{1}{2}}\left[rac{R^{\mathcal{T}M^{\phi}}/2}{\sinh\left(R^{\mathcal{T}M^{\phi}}/2
ight)}
ight], \
u_{\phi}\left(R^{\mathcal{N}^{\phi}}
ight) &:= \det^{-rac{1}{2}}\left[1-\phi_{|N^{\phi}}'e^{-R^{\mathcal{N}^{\phi}}}
ight]. \end{aligned}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�()

Remark

The *n*-th degree component is given by

$$\varphi_n(f^0 U_{\phi_0}, \cdots, f^n U_{\phi_n}) = \begin{cases} \int_M f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{cases}$$

ヘロン ヘロン ヘビン ヘビン

3

Remark

The *n*-th degree component is given by

$$\varphi_n(f^0 U_{\phi_0}, \cdots, f^n U_{\phi_n}) = \begin{cases} \int_M f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{cases}$$

This represents Connes' transverse fundamental class of M/G.

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣ぬ()

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_0(C^{\infty}(M)\rtimes G)\simeq\bigoplus_{\langle\phi\rangle}\bigoplus_{a}H^{\mathsf{ev}}_{G^{\phi}}(M^{\phi}_a),$$

・ロト ・四ト ・ヨト ・ヨト

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_0(C^{\infty}(M)\rtimes G)\simeq\bigoplus_{\langle\phi\rangle}\bigoplus_{a}H^{\mathsf{ev}}_{G^{\phi}}(M^{\phi}_a),$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{ev}(M_a^{\phi})$ is the G^{ϕ} -invariant even de Rham cohomology of M_a^{ϕ} .

<ロ> <同> <同> < 回> < 回>

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_0(C^\infty(M)\rtimes G)\simeq\bigoplus_{\langle\phi\rangle}\bigoplus_{a}H^{\mathsf{ev}}_{G^\phi}(M^\phi_a),$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{ev}(M_a^{\phi})$ is the G^{ϕ} -invariant even de Rham cohomology of M_a^{ϕ} .

Lemma

Any closed form $\omega \in \Omega^{\bullet}_{G^{\phi}}(M^{\phi}_{a})$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_0(C^{\infty}(M)\rtimes G)\simeq\bigoplus_{\langle\phi\rangle}\bigoplus_{a}H^{ev}_{G^{\phi}}(M^{\phi}_a),$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{ev}(M_a^{\phi})$ is the G^{ϕ} -invariant even de Rham cohomology of M_a^{ϕ} .

Lemma

Any closed form $\omega \in \Omega^{\bullet}_{G^{\phi}}(M^{\phi}_{a})$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$ via the transformation,

$$f^0 df^1 \wedge \cdots \wedge df^k \longrightarrow U_{\phi} \tilde{f}^0 \otimes \tilde{f}^1 \otimes \cdots \otimes \tilde{f}^k, \quad f^j \in C^{\infty}(M^{\phi}_a)^{G^{\phi}}$$

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_0(C^{\infty}(M)\rtimes G)\simeq\bigoplus_{\langle\phi\rangle}\bigoplus_{a}H^{ev}_{G^{\phi}}(M^{\phi}_a),$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{ev}(M_a^{\phi})$ is the G^{ϕ} -invariant even de Rham cohomology of M_a^{ϕ} .

Lemma

Any closed form $\omega \in \Omega^{\bullet}_{G^{\phi}}(M^{\phi}_{a})$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$ via the transformation,

$$f^0 df^1 \wedge \cdots \wedge df^k \longrightarrow U_{\phi} \tilde{f}^0 \otimes \tilde{f}^1 \otimes \cdots \otimes \tilde{f}^k, \quad f^j \in C^{\infty}(M^{\phi}_a)^{G^{\phi}}$$

where \tilde{f}^{j} is a G^{ϕ} -invariant smooth extension of f^{j} to M.

Conformal Invariants

Assume that the conformal structure C is nonflat.

Assume that the conformal structure $\ensuremath{\mathcal{C}}$ is nonflat. Then

Assume that the conformal structure C is nonflat. Then

• For any closed even form $\omega \in \Omega_{G^{\phi}}^{ev}(M_a^{\phi})$, the pairing $\langle Ch(\mathcal{C}), \eta_{\omega} \rangle$ is a conformal invariant.

Assume that the conformal structure C is nonflat. Then

- For any closed even form $\omega \in \Omega_{G^{\phi}}^{ev}(M_a^{\phi})$, the pairing $\langle Ch(\mathcal{C}), \eta_{\omega} \rangle$ is a conformal invariant.
- **2** For any G-invariant metric $g \in C$, we have

$$\langle \mathsf{Ch}(\mathcal{C}), \eta_{\omega} \rangle = \int_{\mathcal{M}_{a}^{\phi}} \hat{\mathcal{A}}(\mathcal{R}^{T\mathcal{M}^{\phi}}) \wedge \nu_{\phi}\left(\mathcal{R}^{\mathcal{N}^{\phi}}\right) \wedge \omega.$$

Assume that the conformal structure C is nonflat. Then

- For any closed even form $\omega \in \Omega_{G^{\phi}}^{ev}(M_a^{\phi})$, the pairing $\langle Ch(\mathcal{C}), \eta_{\omega} \rangle$ is a conformal invariant.
- **2** For any G-invariant metric $g \in C$, we have

$$\langle \mathsf{Ch}(\mathcal{C}), \eta_{\omega} \rangle = \int_{\mathcal{M}_{a}^{\phi}} \hat{A}(\mathcal{R}^{T\mathcal{M}^{\phi}}) \wedge \nu_{\phi}\left(\mathcal{R}^{\mathcal{N}^{\phi}}\right) \wedge \omega.$$

Remark

The above invariants are not the type of conformal invariants appearing in the Deser-Schwimmer conjecture solved by Spyros Alexakis in 2007 (about 600 pages).