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Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then
M /G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG
Trade the space M/G for the crossed product algebra,

CX(M) % G = {Z foug; € C§°(M)},

Uy = u(;l = Ug-1, usf = (fo ¢>_1)u¢,.

Proposition (Green)

If G acts freely and properly, then CZ°(M/G) is Morita equivalent
to C(M) x G.
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The Noncommutative Torus

Given 6 € R, let Z act on S! by

k.z .= e2km0, Vz e S'VkeZ.

Remark
If & ¢ Q, then the orbits of the action are dense in S*.

|

The crossed-product algebra Ay := C>(S?) %y Z is generated by
two operators U and V such that

Uvr=u"t,  vr=vh o w=e"uv.

Remark
The algebra Ay is called the noncommutative torus.
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Overview of Noncommutative Geometry

Classical NCG
Manifold M Spectral Triple (A, H, D)
Vector Bundle E over M Projective Module £ over A

E=edd, ec My(A), e2=e

indlpvg Ind Dv&
de Rham Homology/Cohomology Cyclic Cohomology/Homology
Atiyah-Singer Index Formula Connes-Chern Character Ch(D)
indDye = [ A(RM) A Ch(FE) ind Dge = (Ch(D), Ch(&))

Characteristic Classes Cyclic Cohomology for Hopf Algebras
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Definition (Connes-Moscovici)

A spectral triple (A, H, D) consists of
@ A Z,-graded Hilbert space H = Ht & H .
@ An involutive algebra A represented in H.
© A selfadjoint unbounded operator D on H such that
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Dirac Spectral Triple

e (M", g) compact Riemannian spin manifold (n even) with
spinor bundle $ =3t @ .

oD, : C*(M,8) — C>(M,$) is the Dirac operator of (M, g).

@ C°°(M) acts by multiplication on Lé(M,$).

Then (Coo(l\/l), [2(M,$) ,lpg) is a spectral triple.

We also get spectral triples by taking
@ H=L2(M,AN*T*M) and D = d + d*.
o H="L>M,N*TiM) and D=0+ (when M is a complex
manifold).
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Diffeomorphism-Invariant Geometry

Setup

@ M smooth manifold.

e G = Diff(M) full group diffeomorphism group of M.

Fact

The only G-invariant geometric structure of M is its manifold
structure.

| \

Theorem (Connes-Moscovici ‘95)
There is a spectral triple (C2°(P) x G,L*(P,A*T*P), D), where
o P={gjdx' ®dx/;(gj) > 0} is the metric bundle of M.

e D s a "mixed-degree” signature operator, so that

D|D| = dy + d;:, = dvd\*/ = d\*/dv.

A
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@ (M" g) compact Riemannian spin manifold (n even) with
spinor bundle $ =8t @ .
° D, : C*(M,3)— C>=(M,$) is the Dirac operator of (M, g).
@ C°°(M) acts by multiplication on LZ(M, $).
Consider a conformal change of metric,

g = kg, k € C®(M), k>0.

Then the Dirac spectral triple <C°°(I\/I), LE(M,$),ID§> is unitarily
equivalent to (COO(I\/I), L2(M, $), \/ﬂDg\/E)

11/31



Conformal Change of Metric

@ (M", g) compact Riemannian spin manifold (n even) with
spinor bundle $ =8t @ .

° D, : C*(M,3)— C>=(M,$) is the Dirac operator of (M, g).

@ C°°(M) acts by multiplication on LZ(M, $).

Consider a conformal change of metric,

g = kg, k € C®(M), k>0.

<

Then the Dirac spectral triple <C°°(I\/I), LE(M,$),ID§> is unitaril
equivalent to (COO(I\/I), L2(M, $), \/ﬂDg\/E) (i.e., the spectral

triples are intertwined by a unitary operator).
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H, D), consists of
@ A Zo-graded Hilbert space H = HT & H ™.
@ An involutive algebra A represented in H.
© A selfadjoint unbounded operator D on H such that
@ D maps H* to HT.

@ (D +i)"!is compact.
© is bounded for all a € A.
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H, D), consists of
@ A Zo-graded Hilbert space H = H™ & H ™.

@ An involutive algebra A represented in ‘H together with an
automorphism o : A — A such that o(a)* = o~1(a*) for all
aec A

© A selfadjoint unbounded operator D on H such that

@ D maps H* to HF.
@ (D +i)"!is compact.
© is bounded for all a € A.
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H, D), consists of
@ A Zp-graded Hilbert space H = HT @& H .

@ An involutive algebra A represented in H together with an
automorphism o : A — A such that o(a)* = o~1(a*) for all
ac A

© A selfadjoint unbounded operator D on H such that
© D maps H* to HTF.
@ (D= i)7!is compact.
© [D,a], := Da— o(a)D is bounded for all a € A.
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Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)

Consider the following:
e An ordinary spectral triple (A, H, D).
@ A positive element k € A with associated inner automorphism
o(a) = k?ak=2, ac A.
Then (A, H, kDk), is a twisted spectral triple.
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Pseudo-Inner Twistings

Proposition (RP-+HW)
Consider the following data:

@ An ordinary spectral triple (A, H, D).
A € L(H) so that
0 w

there are inner automorphisms o+ (a) = k*a(k*)~!
associated positive elements k* € A in such way that

@ A positive even operator w = (

ktk™ =k kT and wra=oc%(a)wt Vae A

Set k = kt k= and o(a) = kak=1. Then (A, H,wDw), is a
twisted spectral triple.

Example (RP+HW)

Connes-Tretkoff's twisted spectral triples over NC tori associated
to conformal weights.
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Further Examples

Further Examples

e Conformal Dirac spectral triple (Connes-Moscovici).

@ Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).
o Twisted spectral triples associated to some quantum

statistical systems (e.g., Connes-Bost systems,
supersymmetric Riemann gas) (Greenfield-Marcolli-Teh ‘13).
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Connections over a Spectral Triple

e (A, H,D) is an ordinary spectral triple.

e & finitely generated projective (right) module over A.
@ Space of differential 1-forms:

Qh(A) := Span{adb; a,bc A} C L(H),

where db :=[D, b].

<

A connection on a £ is a linear map V¢ : £ — £ @4 Q% (A) such
that

Vg(ﬁa):§®da+(vgf)a VYaec AVE € €.
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o (A, H,D), is a twisted spectral triple.
o & finitely generated projective (right) module over A.

@ Space of twisted differential 1-forms:
Qb ,(A) = Span{ad,b; a,b€ A} C L(H),

where d,b := [D, b], = Db — o(b)D.
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o-Connections over a Twisted Spectral Triple

o (A, H,D), is a twisted spectral triple.
o & finitely generated projective (right) module over A.

@ Space of twisted differential 1-forms:
QID,U(.A) = Span{ad,b; a,b € A} C L(H),
where d,b := [D, b], = Db — o(b)D.

A o-translate of £ is a finitely generated projective module £
together with a linear isomorphism ¢ : £ — £7 such that

of(ta) =o%(€)o(a) VE€EVac A

17/31
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o-Connections

Definition (RP+HW)

A o-connection on a finitely generated projective module £ is a
linear map V¢ : & — £7 ® 4 Q} _(A) such that

VEi(¢a) =0 (&)@ dra+ (VE¢)a Vac AVEEE.

Example
If £ = eA9 with e = € € My(A), then
O £7 =o(e)A9 is a o-translate.

@ It is equipped with the Grassmanian o-connection,

V§ = (0(e) ® 1)d,.

18/31
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Coupling with o-connections

Proposition (RP+HW)

The datum of o-connection on £ defines a coupled operator,

Dye : E@4domD — 7 @4 H,

0 D2
Dos = ve )
= (o 5)

where Dég : £ ® dom D — £7 @ HT are Fredholm operators.

of the form,

Example

For a Dirac spectral triple (C>°(M), Lé(/\/l),,ﬁ',@g) and
E = C>®(M,E), it can be shown that

© Any connection VE on E defines a connection on &.

@ The corresponding coupled operator agrees with Dge.
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Definition
The index of Dye is

1
ind Dye 1= 5 (ind Dég — ind Dgg) .

where ind DE, = dim ker D, — dim coker DZ, .

RENEILS

When ¢ = id, and in all the main examples with ¢ # id, we have

ind Dge = ind D‘VFS.
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Definition
The index of Dye is

1
ind Dye 1= 5 (ind Dég — ind Dgg) .

where ind DE, = dim ker D, — dim coker DZ, .

RENEILS

When ¢ = id, and in all the main examples with ¢ # id, we have

ind Dge = ind D‘VFS.

Proposition (Connes-Moscovici, RP+HW)
© ind Dye depends only on the K-theory class of £.
@ There is a unique additive map indp , : Ko(A) — %Z so that

indp[] = ind Dge (&, V9).
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Connes-Chern Character

Lemma (RP+HW)

Suppose that (A, H, D), is p-summable, i.e., Tr|D|™P < oo for
some p > 1. Assume further that D is invertible and £ = e A9,
e2=ec Mq(A). Then, for all k > %p,

. _ 1 -1 2k
ind Dge = §Tr{7(D D, e],) }

where vy = idy+ —idy—.

Theorem (Connes-Moscovici, RP+HW)

Assume (A, H, D), is p-summable. Then there is an even periodic
cyclic class Ch(D), € HP°(A), called Connes-Chern character,
such that

ind Dge = (Ch(D)s, Ch(E))  Y(E, VE),

where Ch(&) is the Chern character in periodic cyclic homology. |
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@ M?" is a compact spin oriented manifold (n even).

@ C is a conformal structure on M.

© G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g € C and ¢ € G,

g = ;2g with kg € C®(M), ks > 0.

Q@ C°°(M) x G is the crossed-product algebra, i.e.,

C®(M)x G = {Z faug, Ty € CSO(M)}a

u(’; = u;l = Uy-1,

U¢f = (f o ¢_1)U¢.
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Lemma (Connes-Moscovici)
For ¢ € G define Uy : Lz,(M,,i?) — LE(M,$) by

Ug = k; 2 0.6 VE € L2(M,$).
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For ¢ € G define Uy : L;(M,,ﬁ?) — Lg(l\/l,,?;) by

UgE = k; 20,6 V€ € L2(M,$).

Then Uy is a unitary operator, and
Uy DgU;’; = \/kd)LDg\/k(p.

Proposition (Connes-Moscovici)

The datum of any metric g € C defines a twisted spectral triple
(c™(M) % 6, L2(M.$).D, ) given by
@ The Dirac operator ) p as§ociated to g.
@ The representation fuy, — fUy of C*°(M) x G in LE(M,,$).
@ The automorphism og(fug) := k(;lfud).
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Conformal Connes-Chern Character

Theorem (RP+HW)

Q The Connes-Chern character Ch(P,)o, € HPO(C>®(M) x G)
is an invariant of the conformal class C.

@ For any even cyclic homology class n € HPo(C>*(M) x G),
the pairing,

(Ch®g)og,m),

is a scalar conformal invariant.

Definition

The conformal Connes-Chern character Ch(C) € HP?(C>°(M) x G)
is the Connes-Chern character Ch(P,),, for any metric g € C.
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If the conformal structure C is non-flat, then C contains a
G-invariant metric.
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Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a
G-invariant metric.

| 5\

Fact
If g € C is G-invariant, then (COO(I\/I) X G, LE(M,$),Dg) is an

@z

ordinary spectral triple (i.e., g = 1).
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Computation of Ch(C)

Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a
G-invariant metric.

| 5\

Fact
If g € C is G-invariant, then (COO(I\/I) X G, LE(M,$),LDg) is an

Og
ordinary spectral triple (i.e., g = 1).

| A\

Consequence
When C is non-flat, we are reduced to the computation of the

Connes-Chern character of (COO(I\/I) x G, LE(M,$),Dg>, where G
is a group of isometries.

<
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©® When G is a group of isometries, the Connes-Chern character
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cocycle.
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Computation of Ch(C)

©® When G is a group of isometries, the Connes-Chern character
of (C>®°(M) x G, Lﬁ(l\/l,$),@g) is represented by the CM
cocycle.

© The computation of the CM cocycle amounts to get a
“differentiable version” of the local equivariant index theorem
(LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.

© We produce a new proof of LEIT that allows us to compute
the CM cocyle in the same shot.

© This approach was various other applications (equivariant JLO
cocycle, equivariant eta cochain, Yong Wang's papers).
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Local Index Formula in Conformal Geometry

@ C is a nonflat conformal structure on M.

@ g is a G-invariant metric in C.

Let p € G. Then
o M? is the fixed-point set of ¢; this is a disconnected sums of
submanifolds,
M?® =||M¢, dimM¢ = a.
o N = (TM?)* is the normal bundle (vector bundle over M?).
@ Over M?, with respect to TM|M¢ = TM? & N?, there are
decompositions,

¢ = Ly VM — gTM? g gN?,
0 ¢|N’¢’
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the conformal Connes-Chern

character Ch(D, ), is represented by the periodic cyclic cocycle
¢ = (v2m) given by

902m(f0 U¢07 B f2mU¢2m) =
(=i)2
(2m)

(27r)_;/¢/A4(RTM¢)/\V¢ (RN¢)Af0d?1A---Ad?2m,
M3

!
a
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Theorem (RP + HW)

For any G-invariant metric g € C, the conformal Connes-Chern
character Ch(D, ), is represented by the periodic cyclic cocycle
¢ = (p2m) given by

902m(f0 U¢07 B f2mU¢2m) =

EZ_r;))Q (27r)_;/M¢ AR™M*Y Ay (RN¢)Af0d?1A---Ad?2m,

!
a

Where¢::¢00"‘o¢2m, and?j = fjod)alo...o fjl'
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric g € C, the conformal Connes-Chern
character Ch(D, ), is represented by the periodic cyclic cocycle
¢ = (p2m) given by

902m(f0 U¢07 B f2mU¢2m) =

(=0) (27r)_;/¢/A4(RTM¢)/\V¢ (RN¢)Af0d?1A---Ad?2m,
M3

(2m)

!
a

where ¢ := ¢ 0 - - 0 o, and I = fjoﬁbalo“'o I—ll and

R RTM? /2
A(R™?) = detz | — 1=
( ) det? sinh (RTM?/2) |’

¢
Vg (RJW) = det 2 [1 — ¢1N¢e*RN } .
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Local Index Formula in Conformal Geometry

The n-th degree component is given by

op gy Sy PR A AdET i ggo-iogn 2,
Son(fUd)m ,fU¢,,)_{O if¢00"‘o¢n7:1.
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Local Index Formula in Conformal Geometry

Remark
The n-th degree component is given by

{ S FPdFEN - AdFT if gpo--0, =1,
0

0 ... _fn =
(O Ugy, -+, F"Up,) if oo -0y L.

This represents Connes’ transverse fundamental class of M/G.
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Cyclic Homology of C*(M) x G

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

HPo(C®(M) x G) ~ P P HE, (Mg
(9) a

where G is the centralizer of ¢ and HE: (M¢) is the G?-invariant
even de Rham cohomology of M¢.

Lemma

Any closed form w € Q‘G¢(M§) ) defines a cyclic cycle n,, on
C>*(M) x G via the transformation,

FOdFLA- - NdFF — UyFP 0P e o FF, fec®(Mm$)’

where 7 is a G®-invariant smooth extension of f/ to M.
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Conformal Invariants

Theorem (RP+HW)

Assume that the conformal structure C is nonflat. Then

@ For any closed even form w € Qg@(/\ﬂf ), the pairing

(Ch(C),ny) is a conformal invariant.

@ For any G-invariant metric g € C, we have

(Ch(C), ) = /w AR™) vy (RY) Aw.

The above invariants are not the type of conformal invariants
appearing in the Deser-Schwimmer conjecture solved by Spyros
Alexakis in 2007 (about 600 pages).
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