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Main Results

Main Results (RP+HW)

Local index formula in conformal-diffeomorphism invariant
geometry.

Construction of a new class of conformal invariants.
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Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then
M/G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,

C∞c (M) o G =
{∑

fφuφ; fφ ∈ C∞c (M)
}
,

u∗φ = u−1φ = uφ−1 , uφf = (f ◦ φ−1)uφ.

Proposition (Green)

If G acts freely and properly, then C∞c (M/G ) is Morita equivalent
to C∞c (M) o G .
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The Noncommutative Torus

Example

Given θ ∈ R, let Z act on S1 by

k .z := e2ikπθz ∀z ∈ S1 ∀k ∈ Z.

Remark

If θ 6∈ Q, then the orbits of the action are dense in S1.

The crossed-product algebra Aθ := C∞(S1) oθ Z is generated by
two operators U and V such that

U∗ = U−1, V ∗ = V−1, VU = e2iπθUV .

Remark

The algebra Aθ is called the noncommutative torus.
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Overview of Noncommutative Geometry

Classical NCG

Manifold M Spectral Triple (A,H,D)

Vector Bundle E over M Projective Module E over A
E = eAq, e ∈ Mq(A), e2 = e

ind /D∇E ind D∇E

de Rham Homology/Cohomology Cyclic Cohomology/Homology

Atiyah-Singer Index Formula Connes-Chern Character Ch(D)

ind /D∇E =
∫

Â(RM) ∧ Ch(FE ) ind D∇E = 〈Ch(D),Ch(E)〉

Characteristic Classes Cyclic Cohomology for Hopf Algebras
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Â(RM) ∧ Ch(FE ) ind D∇E = 〈Ch(D),Ch(E)〉

Characteristic Classes Cyclic Cohomology for Hopf Algebras

7 / 31



Overview of Noncommutative Geometry

Classical NCG

Manifold M Spectral Triple (A,H,D)

Vector Bundle E over M Projective Module E over A
E = eAq, e ∈ Mq(A), e2 = e

ind /D∇E ind D∇E

de Rham Homology/Cohomology Cyclic Cohomology/Homology

Atiyah-Singer Index Formula Connes-Chern Character Ch(D)

ind /D∇E =
∫
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Spectral Triples

Definition (Connes-Moscovici)

A spectral triple (A,H,D) consists of

1 A Z2-graded Hilbert space H = H+ ⊕H−.

2 An involutive algebra A represented in H.
3 A selfadjoint unbounded operator D on H such that

1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 [D, a] is bounded for all a ∈ A.
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Dirac Spectral Triple

Example

(Mn, g) compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S−.

/Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

C∞(M) acts by multiplication on L2
g (M, /S).

Then
(

C∞(M), L2 (M, /S) , /Dg

)
is a spectral triple.

Remark

We also get spectral triples by taking

H = L2(M,Λ•T ∗M) and D = d + d∗.

H = L2(M,Λ0,•T ∗CM) and D = ∂ + ∂
∗

(when M is a complex
manifold).
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Diffeomorphism-Invariant Geometry

Setup

M smooth manifold.

G = Diff(M) full group diffeomorphism group of M.

Fact

The only G-invariant geometric structure of M is its manifold
structure.

Theorem (Connes-Moscovici ‘95)

There is a spectral triple
(
C∞c (P) o G , L2 (P,Λ•T ∗P) ,D

)
, where

P =
{

gijdx i ⊗ dx j ; (gij) > 0
}

is the metric bundle of M.

D is a “mixed-degree” signature operator, so that

D|D| = dH + d∗H + dV d∗V − d∗V dV .

10 / 31



Diffeomorphism-Invariant Geometry

Setup

M smooth manifold.

G = Diff(M) full group diffeomorphism group of M.

Fact

The only G-invariant geometric structure of M is its manifold
structure.

Theorem (Connes-Moscovici ‘95)

There is a spectral triple
(
C∞c (P) o G , L2 (P,Λ•T ∗P) ,D

)
, where

P =
{

gijdx i ⊗ dx j ; (gij) > 0
}

is the metric bundle of M.

D is a “mixed-degree” signature operator, so that

D|D| = dH + d∗H + dV d∗V − d∗V dV .

10 / 31



Conformal Change of Metric

Example

(Mn, g) compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S−.

/Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

C∞(M) acts by multiplication on L2
g (M, /S).

Consider a conformal change of metric,

ĝ = k−2g , k ∈ C∞(M), k > 0.

Then the Dirac spectral triple
(

C∞(M), L2
ĝ (M, /S), /D ĝ

)
is unitarily

equivalent to
(

C∞(M), L2
g (M, /S),

√
k /Dg

√
k
)

(i.e., the spectral

triples are intertwined by a unitary operator).
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ĝ = k−2g , k ∈ C∞(M), k > 0.

Then the Dirac spectral triple
(

C∞(M), L2
ĝ (M, /S), /D ĝ
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple consists of

1 A Z2-graded Hilbert space H = H+ ⊕H−.

2 An involutive algebra A represented in H.
3 A selfadjoint unbounded operator D on H such that

1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 is bounded for all a ∈ A.
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Definition (Connes-Moscovici)
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1 A Z2-graded Hilbert space H = H+ ⊕H−.
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a ∈ A.

3 A selfadjoint unbounded operator D on H such that
1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 is bounded for all a ∈ A.

12 / 31



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D)σ consists of

1 A Z2-graded Hilbert space H = H+ ⊕H−.

2 An involutive algebra A represented in H together with an
automorphism σ : A → A such that σ(a)∗ = σ−1(a∗) for all
a ∈ A.

3 A selfadjoint unbounded operator D on H such that
1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 [D, a]σ := Da− σ(a)D is bounded for all a ∈ A.

12 / 31



Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)

Consider the following:

An ordinary spectral triple (A,H,D).

A positive element k ∈ A with associated inner automorphism
σ(a) = k2ak−2, a ∈ A.

Then (A,H, kDk)σ is a twisted spectral triple.
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Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

An ordinary spectral triple (A,H,D).

A positive even operator ω =

(
ω+ 0
0 ω−

)
∈ L(H) so that

there are inner automorphisms σ±(a) = k±a(k±)−1

associated positive elements k± ∈ A in such way that

k+k− = k−k+ and ω±a = σ±(a)ω± ∀a ∈ A.

Set k = k+k− and σ(a) = kak−1. Then (A,H, ωDω)σ is a
twisted spectral triple.

Example (RP+HW)

Connes-Tretkoff’s twisted spectral triples over NC tori associated
to conformal weights.
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Further Examples

Further Examples

Conformal Dirac spectral triple (Connes-Moscovici).

Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).

Twisted spectral triples associated to some quantum
statistical systems (e.g., Connes-Bost systems,
supersymmetric Riemann gas) (Greenfield-Marcolli-Teh ‘13).
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Connections over a Spectral Triple

Setup

(A,H,D) is an ordinary spectral triple.

E finitely generated projective (right) module over A.

Space of differential 1-forms:

Ω1
D(A) := Span{adb; a, b ∈ A} ⊂ L(H),

where db := [D, b].

Definition

A connection on a E is a linear map ∇E : E → E ⊗A Ω1
D(A) such

that
∇E(ξa) = ξ ⊗ da +

(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E .
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σ-Connections over a Twisted Spectral Triple

Setup/Notation

(A,H,D)σ is a twisted spectral triple.

E finitely generated projective (right) module over A.

Space of twisted differential 1-forms:

Ω1
D,σ(A) = Span{adσb; a, b ∈ A} ⊂ L(H),

where dσb := [D, b]σ = Db − σ(b)D.

Definition

A σ-translate of E is a finitely generated projective module Eσ
together with a linear isomorphism σE : E → Eσ such that

σE(ξa) = σE(ξ)σ(a) ∀ξ ∈ E ∀a ∈ A.
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σ-Connections

Definition (RP+HW)

A σ-connection on a finitely generated projective module E is a
linear map ∇E : E → Eσ ⊗A Ω1

D,σ(A) such that

∇E(ξa) = σE(ξ)⊗ dσa +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E .

Example

If E = eAq with e = e2 ∈ Mq(A), then

1 Eσ = σ(e)Aq is a σ-translate.

2 It is equipped with the Grassmanian σ-connection,

∇E0 = (σ(e)⊗ 1)dσ.

18 / 31
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Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on E defines a coupled operator,

D∇E : E ⊗A dom D → Eσ ⊗A H,

of the form,

D∇E =

(
0 D−∇E

D+
∇E 0

)
,

where D±∇E : E ⊗ dom D± → Eσ ⊗H∓ are Fredholm operators.

Example

For a Dirac spectral triple (C∞(M), L2
g (M), /S , /Dg ) and

E = C∞(M,E ), it can be shown that

1 Any connection ∇E on E defines a connection on E .

2 The corresponding coupled operator agrees with /D∇E .

19 / 31
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Index Map

Definition

The index of D∇E is

ind D∇E :=
1

2

(
ind D+

∇E − ind D−∇E
)
.

where ind D±∇E = dim ker D±∇E − dim coker D±∇E .

Remark

When σ = id, and in all the main examples with σ 6= id, we have

ind D∇E = ind D+
∇E .

Proposition (Connes-Moscovici, RP+HW)

1 ind D∇E depends only on the K -theory class of E .

2 There is a unique additive map indD,σ : K0(A)→ 1
2Z so that

indD [E ] = ind D∇E ∀(E ,∇E).
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Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1.

Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A).

Then, for all k ≥ 1
2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable.

Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A)

, called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,

such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.

21 / 31



Connes-Chern Character

Lemma (RP+HW)

Suppose that (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for
some p ≥ 1. Assume further that D is invertible and E = eAq,
e2 = e ∈ Mq(A). Then, for all k ≥ 1

2p,

ind D∇E =
1

2
Tr
{
γ(D−1[D, e]σ)2k

}
,

where γ = idH+ − idH− .

Theorem (Connes-Moscovici, RP+HW)

Assume (A,H,D)σ is p-summable. Then there is an even periodic
cyclic class Ch(D)σ ∈ HP0(A), called Connes-Chern character,
such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.
21 / 31



Conformal Dirac Spectral Triple

Setup

1 Mn is a compact spin oriented manifold (n even).

2 C is a conformal structure on M.

3 G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g ∈ C and φ ∈ G ,

φ∗g = k−2φ g with kφ ∈ C∞(M), kφ > 0.

4 C∞(M) o G is the crossed-product algebra, i.e.,

C∞(M) o G =
{∑

fφuφ; fφ ∈ C∞c (M)
}
,

u∗φ = u−1φ = uφ−1 , uφf = (f ◦ φ−1)uφ.
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For φ ∈ G define Uφ : L2
g (M, /S)→ L2

g (M, /S) by

Uφξ = k
− n

2
φ φ∗ξ ∀ξ ∈ L2

g (M, /S).

Then Uφ is a unitary operator, and

Uφ /DgU∗φ =
√

kφ /Dg

√
kφ.

Proposition (Connes-Moscovici)

The datum of any metric g ∈ C defines a twisted spectral triple(
C∞(M) o G , L2

g (M, /S), /Dg

)
σg

given by

1 The Dirac operator /Dg associated to g.

2 The representation fuφ → fUφ of C∞(M) o G in L2
g (M, /S).

3 The automorphism σg (fuφ) := k−1φ fuφ.
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Conformal Connes-Chern Character

Theorem (RP+HW)

1 The Connes-Chern character Ch(/Dg )σg ∈ HP0(C∞(M) o G )
is an invariant of the conformal class C.

2 For any even cyclic homology class η ∈ HP0(C∞(M) o G ),
the pairing,

〈Ch(/Dg )σg , η〉,

is a scalar conformal invariant.

Definition

The conformal Connes-Chern character Ch(C) ∈ HP0(C∞(M)oG )
is the Connes-Chern character Ch(/Dg )σg for any metric g ∈ C.
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Computation of Ch(C)

Proposition (Ferrand-Obata)

If the conformal structure C is non-flat, then C contains a
G -invariant metric.

Fact

If g ∈ C is G -invariant, then
(

C∞(M) o G , L2
g (M, /S), /Dg

)
σg

is an

ordinary spectral triple (i.e., σg = 1).

Consequence

When C is non-flat, we are reduced to the computation of the

Connes-Chern character of
(

C∞(M) o G , L2
g (M, /S), /Dg

)
, where G

is a group of isometries.
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Computation of Ch(C)

Remark

1 When G is a group of isometries, the Connes-Chern character
of (C∞(M) o G , L2

g (M, /S), /Dg ) is represented by the CM
cocycle.

2 The computation of the CM cocycle amounts to get a
“differentiable version” of the local equivariant index theorem
(LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.

3 We produce a new proof of LEIT that allows us to compute
the CM cocyle in the same shot.

4 This approach was various other applications (equivariant JLO
cocycle, equivariant eta cochain, Yong Wang’s papers).
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Local Index Formula in Conformal Geometry

Setup

C is a nonflat conformal structure on M.

g is a G -invariant metric in C.

Notation

Let φ ∈ G . Then

Mφ is the fixed-point set of φ; this is a disconnected sums of
submanifolds,
Mφ =

⊔
Mφ

a , dim Mφ
a = a.

N φ = (TMφ)⊥ is the normal bundle (vector bundle over Mφ).

Over Mφ, with respect to TM|Mφ = TMφ ⊕N φ, there are
decompositions,

φ′ =

(
1 0
0 φ′|Nφ

)
, ∇TM = ∇TMφ ⊕∇Nφ

.
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G -invariant metric g ∈ C, the conformal Connes-Chern
character Ch(/Dg )σg is represented by the periodic cyclic cocycle
ϕ = (ϕ2m) given by

ϕ2m(f 0Uφ0 , · · · , f
2mUφ2m) =

(−i)
n
2

(2m)!

∑
a

(2π)−
a
2

∫
Mφ

a

Â(RTMφ
)∧νφ

(
RN

φ
)
∧f 0df̃ 1∧· · ·∧df̃ 2m,

where φ := φ0 ◦ · · · ◦ φ2m, and f̃ j := f j ◦ φ−10 ◦ · · · ◦ φ
−1
j−1, and

Â
(

RTMφ
)

:= det
1
2

[
RTMφ

/2

sinh
(
RTMφ/2

)] ,
νφ

(
RN

φ
)

:= det−
1
2

[
1− φ′|Nφe−R

Nφ
]
.
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Local Index Formula in Conformal Geometry

Remark

The n-th degree component is given by

ϕn(f 0Uφ0 , · · · , f
nUφn) =

{ ∫
M f 0df̃ 1 ∧ · · · ∧ df̃ n if φ0 ◦ · · · ◦ φn = 1,

0 if φ0 ◦ · · · ◦ φn 6= 1.

This represents Connes’ transverse fundamental class of M/G .
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Cyclic Homology of C∞(M) o G

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

HP0(C∞(M) o G ) '
⊕
〈φ〉

⊕
a

Hev
Gφ(Mφ

a ),

where Gφ is the centralizer of φ and Hev
Gφ(Mφ

a ) is the Gφ-invariant

even de Rham cohomology of Mφ
a .

Lemma

Any closed form ω ∈ Ω•
Gφ(Mφ

a ) defines a cyclic cycle ηω on
C∞(M) o G via the transformation,

f 0df 1 ∧ · · · ∧ df k −→ Uφf̃ 0 ⊗ f̃ 1 ⊗ · · · ⊗ f̃ k , f j ∈ C∞(Mφ
a )G

φ
,

where f̃ j is a Gφ-invariant smooth extension of f j to M.
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Conformal Invariants

Theorem (RP+HW)

Assume that the conformal structure C is nonflat. Then

1 For any closed even form ω ∈ Ωev
Gφ(Mφ

a ), the pairing
〈Ch(C), ηω〉 is a conformal invariant.

2 For any G -invariant metric g ∈ C, we have

〈Ch(C), ηω〉 =

∫
Mφ

a

Â(RTMφ
) ∧ νφ

(
RN

φ
)
∧ ω.

Remark

The above invariants are not the type of conformal invariants
appearing in the Deser-Schwimmer conjecture solved by Spyros
Alexakis in 2007 (about 600 pages).
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Â(RTMφ
) ∧ νφ

(
RN

φ
)
∧ ω.

Remark

The above invariants are not the type of conformal invariants
appearing in the Deser-Schwimmer conjecture solved by Spyros
Alexakis in 2007 (about 600 pages).
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