Noncommutative Geometry and Conformal Geometry:

Local Index Formula and Conformal Invariants (joint work with Hang Wang)

Raphaël Ponge

Seoul National University \& UC Berkeley

November 1, 2014

Main Results

Main Results

Main Results (RP + HW)

- Local index formula in conformal-diffeomorphism invariant geometry.

Main Results

Main Results (RP + HW)

- Local index formula in conformal-diffeomorphism invariant geometry.
- Construction of a new class of conformal invariants.

References

References

Main References

References

Main References

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.

Main References

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.

Main References

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv by next week.

Main References

- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv by next week.
- RP+HW: Noncommutative geometry and conformal geometry. III. Poincaré duality and Vafa-Witten inequality. arXiv:1310.6138.

Conformal Geometry

Conformal Geometry

Group Actions on Manifolds

Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then M / G need not be Hausdorff

Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then M / G need not be Hausdorff (unless G acts freely and properly).

Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then M / G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG

Trade the space M / G for the crossed product algebra,

$$
\begin{aligned}
& C_{c}^{\infty}(M) \rtimes G=\left\{\sum f_{\phi} u_{\phi} ; f_{\phi} \in C_{c}^{\infty}(M)\right\}, \\
& u_{\phi}^{*}=u_{\phi}^{-1}=u_{\phi^{-1}}, \quad u_{\phi} f=\left(f \circ \phi^{-1}\right) u_{\phi} .
\end{aligned}
$$

Group Actions on Manifolds

Fact

If G is an arbitrary group of diffeomorphisms of a manifold M, then M / G need not be Hausdorff (unless G acts freely and properly).

Solution Provided by NCG

Trade the space M / G for the crossed product algebra,

$$
\begin{aligned}
& C_{c}^{\infty}(M) \rtimes G=\left\{\sum f_{\phi} u_{\phi} ; f_{\phi} \in C_{c}^{\infty}(M)\right\}, \\
& u_{\phi}^{*}=u_{\phi}^{-1}=u_{\phi^{-1}}, \quad u_{\phi} f=\left(f \circ \phi^{-1}\right) u_{\phi} .
\end{aligned}
$$

Proposition (Green)

If G acts freely and properly, then $C_{c}^{\infty}(M / G)$ is Morita equivalent to $C_{c}^{\infty}(M) \rtimes G$.

The Noncommutative Torus

The Noncommutative Torus

Example
Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^{1} by

$$
k \cdot z:=e^{2 i k \pi \theta} z \quad \forall z \in S^{1} \forall k \in \mathbb{Z}
$$

The Noncommutative Torus

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^{1} by

$$
k . z:=e^{2 i k \pi \theta} z \quad \forall z \in S^{1} \forall k \in \mathbb{Z}
$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^{1}.

The Noncommutative Torus

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^{1} by

$$
k \cdot z:=e^{2 i k \pi \theta} z \quad \forall z \in S^{1} \forall k \in \mathbb{Z}
$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^{1}.
The crossed-product algebra $\mathcal{A}_{\theta}:=C^{\infty}\left(S^{1}\right) \rtimes_{\theta} \mathbb{Z}$ is generated by two operators U and V such that

$$
U^{*}=U^{-1}, \quad V^{*}=V^{-1}, \quad V U=e^{2 i \pi \theta} U V
$$

The Noncommutative Torus

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^{1} by

$$
k \cdot z:=e^{2 i k \pi \theta} z \quad \forall z \in S^{1} \forall k \in \mathbb{Z}
$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^{1}.
The crossed-product algebra $\mathcal{A}_{\theta}:=C^{\infty}\left(S^{1}\right) \rtimes_{\theta} \mathbb{Z}$ is generated by two operators U and V such that

$$
U^{*}=U^{-1}, \quad V^{*}=V^{-1}, \quad V U=e^{2 i \pi \theta} U V
$$

Remark

The algebra \mathcal{A}_{θ} is called the noncommutative torus.

Overview of Noncommutative Geometry

Classical
NCG

Overview of Noncommutative Geometry

Classical
NCG

Manifold M

Overview of Noncommutative Geometry

Classical

Manifold M

NCG

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$

Overview of Noncommutative Geometry

Classical

NCG

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle E over M

Overview of Noncommutative Geometry

Classical

NCG

Manifold M

Vector Bundle E over M
ind $D_{\nabla^{E}}$

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Projective Module \mathcal{E} over \mathcal{A}
$\mathcal{E}=e \mathcal{A}^{q}, \quad e \in M_{q}(\mathcal{A}), e^{2}=e$ ind $D_{\nabla^{\mathcal{E}}}$

Overview of Noncommutative Geometry

Classical	NCG
Manifold M	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle E over M	Projective Module \mathcal{E} over \mathcal{A} $\mathcal{E}=e \mathcal{A}^{q}, e \in M_{q}(\mathcal{A}), e^{2}=e$ ind $D_{\nabla^{E}}$
ind $D_{\nabla^{\mathcal{E}}}$	

Overview of Noncommutative Geometry

Classical

NCG

Manifold M

Vector Bundle E over M

$$
\text { ind } D_{\nabla^{E}}
$$

de Rham Homology/Cohomology

Atiyah-Singer Index Formula ind $D_{\nabla^{E}}=\int \hat{A}\left(R^{M}\right) \wedge \operatorname{Ch}\left(F^{E}\right)$

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$

Projective Module \mathcal{E} over \mathcal{A}
$\mathcal{E}=e \mathcal{A}^{q}, e \in M_{q}(\mathcal{A}), e^{2}=e$ ind $D_{\nabla \mathcal{E}}$

Cyclic Cohomology/Homology
Connes-Chern Character $\mathrm{Ch}(D)$ ind $D_{\nabla^{\varepsilon}}=\langle\operatorname{Ch}(D), \operatorname{Ch}(\mathcal{E})\rangle$

Overview of Noncommutative Geometry

Classical

NCG

Manifold M

Vector Bundle E over M ind $D_{\nabla^{E}}$
de Rham Homology/Cohomology

Atiyah-Singer Index Formula $\operatorname{ind} D_{\nabla^{E}}=\int \hat{A}\left(R^{M}\right) \wedge \operatorname{Ch}\left(F^{E}\right)$

Characteristic Classes

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$

Projective Module \mathcal{E} over \mathcal{A}
$\mathcal{E}=e \mathcal{A}^{q}, \quad e \in M_{q}(\mathcal{A}), e^{2}=e$
ind $D_{\nabla \mathcal{E}}$
Cyclic Cohomology/Homology

Connes-Chern Character $\mathrm{Ch}(D)$ ind $D_{\nabla^{\varepsilon}}=\langle\operatorname{Ch}(D), \operatorname{Ch}(\mathcal{E})\rangle$

Cyclic Cohomology for Hopf Algebras

Spectral Triples

Spectral Triples

Definition (Connes-Moscovici)
A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) A \mathbb{Z}_{2}-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that (1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) $[D, a]$ is bounded for all $a \in \mathcal{A}$.

Dirac Spectral Triple

Example

Dirac Spectral Triple

Example

- $\left(M^{n}, g\right)$ compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \$^{-}$.

Dirac Spectral Triple

Example

- $\left(M^{n}, g\right)$ compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \$^{-}$.
- $\square_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).

Dirac Spectral Triple

Example

- $\left(M^{n}, g\right)$ compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, \mathbb{S}) \rightarrow C^{\infty}(M, \mathbb{S})$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, S)$.

Dirac Spectral Triple

Example

- $\left(M^{n}, g\right)$ compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, \mathbb{S}) \rightarrow C^{\infty}(M, \mathbb{S})$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, S)$.

Then $\left(C^{\infty}(M), L^{2}(M, \$), D_{g}\right)$ is a spectral triple.

Dirac Spectral Triple

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, \mathbb{S}) \rightarrow C^{\infty}(M, \mathbb{S})$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, \$)$.

Then $\left(C^{\infty}(M), L^{2}(M, \$), D_{g}\right)$ is a spectral triple.

Remark

We also get spectral triples by taking

- $\mathcal{H}=L^{2}\left(M, \Lambda^{\bullet} T^{*} M\right)$ and $D=d+d^{*}$.
- $\mathcal{H}=L^{2}\left(M, \Lambda^{0, \bullet} T_{\mathbb{C}}^{*} M\right)$ and $D=\bar{\partial}+\bar{\partial}^{*}$ (when M is a complex manifold).

Diffeomorphism-Invariant Geometry

Diffeomorphism-Invariant Geometry

Setup

- M smooth manifold.
- $G=\operatorname{Diff}(M)$ full group diffeomorphism group of M.

Fact

The only G-invariant geometric structure of M is its manifold structure.

Theorem (Connes-Moscovici '95)

There is a spectral triple $\left(C_{c}^{\infty}(P) \rtimes G, L^{2}\left(P, \Lambda^{\bullet} T^{*} P\right), D\right)$, where

- $P=\left\{g_{i j} d x^{i} \otimes d x^{j} ;\left(g_{i j}\right)>0\right\}$ is the metric bundle of M.
- D is a "mixed-degree" signature operator, so that

$$
D|D|=d_{H}+d_{H}^{*}+d_{V} d_{V}^{*}-d_{V}^{*} d_{V}
$$

Conformal Change of Metric

Example

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \mathcal{S}^{-}$.

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \Phi^{-}$.
- $\square_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\mathcal{S}=\$^{+} \oplus \mathcal{S}^{-}$.
- $D_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, S)$.

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\$=\$^{+} \oplus \mathcal{S}^{-}$.
- $D_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, \$)$.

Consider a conformal change of metric,

$$
\hat{g}=k^{-2} g, \quad k \in C^{\infty}(M), k>0
$$

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\mathcal{S}=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, \mathbb{S}) \rightarrow C^{\infty}(M, \mathcal{S})$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, \$)$.

Consider a conformal change of metric,

$$
\hat{g}=k^{-2} g, \quad k \in C^{\infty}(M), k>0
$$

Then the Dirac spectral triple $\left(C^{\infty}(M), L_{\hat{g}}^{2}(M, S), D_{\hat{\mathrm{g}}}\right)$ is unitarily equivalent to $\left(C^{\infty}(M), L_{g}^{2}(M, S), \sqrt{k} D_{g} \sqrt{k}\right)$

Conformal Change of Metric

Example

- (M^{n}, g) compact Riemannian spin manifold (n even) with spinor bundle $\mathcal{S}=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_{g}^{2}(M, S)$.

Consider a conformal change of metric,

$$
\hat{g}=k^{-2} g, \quad k \in C^{\infty}(M), k>0
$$

Then the Dirac spectral triple $\left(C^{\infty}(M), L_{\hat{g}}^{2}(M, S), D_{\hat{g}}\right)$ is unitarily equivalent to $\left(C^{\infty}(M), L_{g}^{2}(M, S), \sqrt{k} D_{g} \sqrt{k}\right)$ (i.e., the spectral triples are intertwined by a unitary operator).

Twisted Spectral Triples

Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that (1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.

Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) $[\mathrm{D}, \mathrm{a}]$ is bounded for all $a \in \mathcal{A}$.

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) is bounded for all $a \in \mathcal{A}$.

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of
(1) $A \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H} together with an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ such that $\sigma(a)^{*}=\sigma^{-1}\left(a^{*}\right)$ for all $a \in \mathcal{A}$.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) is bounded for all $a \in \mathcal{A}$.

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H} together with an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ such that $\sigma(a)^{*}=\sigma^{-1}\left(a^{*}\right)$ for all $a \in \mathcal{A}$.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) $[D, a]_{\sigma}:=D a-\sigma(a) D$ is bounded for all $a \in \mathcal{A}$.

Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)

Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)
Consider the following:

Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)
Consider the following:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)

Consider the following:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in \mathcal{A}$ with associated inner automorphism $\sigma(a)=k^{2} a k^{-2}, a \in \mathcal{A}$.

Conformal Deformations of Spectral Triples

Proposition (Connes-Moscovici)

Consider the following:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in \mathcal{A}$ with associated inner automorphism $\sigma(a)=k^{2} a k^{-2}, a \in \mathcal{A}$.
Then $(\mathcal{A}, \mathcal{H}, k D k)_{\sigma}$ is a twisted spectral triple.

Pseudo-Inner Twistings

Proposition (RP+HW)

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive even operator $\omega=\left(\begin{array}{cc}\omega^{+} & 0 \\ 0 & \omega^{-}\end{array}\right) \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{ \pm}(a)=k^{ \pm} a\left(k^{ \pm}\right)^{-1}$ associated positive elements $k^{ \pm} \in \mathcal{A}$ in such way that

$$
k^{+} k^{-}=k^{-} k^{+} \quad \text { and } \quad \omega^{ \pm} a=\sigma^{ \pm}(a) \omega^{ \pm} \quad \forall a \in \mathcal{A} .
$$

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive even operator $\omega=\left(\begin{array}{cc}\omega^{+} & 0 \\ 0 & \omega^{-}\end{array}\right) \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{ \pm}(a)=k^{ \pm} a\left(k^{ \pm}\right)^{-1}$ associated positive elements $k^{ \pm} \in \mathcal{A}$ in such way that

$$
k^{+} k^{-}=k^{-} k^{+} \quad \text { and } \quad \omega^{ \pm} a=\sigma^{ \pm}(a) \omega^{ \pm} \quad \forall a \in \mathcal{A} .
$$

Set $k=k^{+} k^{-}$and $\sigma(a)=k a k^{-1}$.

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive even operator $\omega=\left(\begin{array}{cc}\omega^{+} & 0 \\ 0 & \omega^{-}\end{array}\right) \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{ \pm}(a)=k^{ \pm} a\left(k^{ \pm}\right)^{-1}$ associated positive elements $k^{ \pm} \in \mathcal{A}$ in such way that

$$
k^{+} k^{-}=k^{-} k^{+} \quad \text { and } \quad \omega^{ \pm} a=\sigma^{ \pm}(a) \omega^{ \pm} \quad \forall a \in \mathcal{A} .
$$

Set $k=k^{+} k^{-}$and $\sigma(a)=k_{a} k^{-1}$. Then $(\mathcal{A}, \mathcal{H}, \omega D \omega)_{\sigma}$ is a twisted spectral triple.

Pseudo-Inner Twistings

Proposition (RP+HW)

Consider the following data:

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive even operator $\omega=\left(\begin{array}{cc}\omega^{+} & 0 \\ 0 & \omega^{-}\end{array}\right) \in \mathcal{L}(\mathcal{H})$ so that there are inner automorphisms $\sigma^{ \pm}(a)=k^{ \pm} a\left(k^{ \pm}\right)^{-1}$ associated positive elements $k^{ \pm} \in \mathcal{A}$ in such way that

$$
k^{+} k^{-}=k^{-} k^{+} \quad \text { and } \quad \omega^{ \pm} a=\sigma^{ \pm}(a) \omega^{ \pm} \quad \forall a \in \mathcal{A}
$$

Set $k=k^{+} k^{-}$and $\sigma(a)=k a k^{-1}$. Then $(\mathcal{A}, \mathcal{H}, \omega D \omega)_{\sigma}$ is a twisted spectral triple.

Example (RP+HW)

Connes-Tretkoff's twisted spectral triples over NC tori associated to conformal weights.

Further Examples

Further Examples

Further Examples

Further Examples

- Conformal Dirac spectral triple (Connes-Moscovici).

Further Examples

Further Examples

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).

Further Examples

Further Examples

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).
- Twisted spectral triples associated to some quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

Connections over a Spectral Triple

Connections over a Spectral Triple

Setup

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.

Connections over a Spectral Triple

Setup

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.

Connections over a Spectral Triple

Setup

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.
- Space of differential 1-forms:

$$
\Omega_{D}^{1}(\mathcal{A}):=\operatorname{Span}\{a d b ; a, b \in \mathcal{A}\} \subset \mathcal{L}(\mathcal{H})
$$

where $d b:=[D, b]$.

Connections over a Spectral Triple

Setup

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.
- Space of differential 1-forms:

$$
\Omega_{D}^{1}(\mathcal{A}):=\operatorname{Span}\{a d b ; a, b \in \mathcal{A}\} \subset \mathcal{L}(\mathcal{H})
$$

where $d b:=[D, b]$.

Connections over a Spectral Triple

Setup

- $(\mathcal{A}, \mathcal{H}, D)$ is an ordinary spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.
- Space of differential 1-forms:

$$
\Omega_{D}^{1}(\mathcal{A}):=\operatorname{Span}\{a d b ; a, b \in \mathcal{A}\} \subset \mathcal{L}(\mathcal{H})
$$

where $d b:=[D, b]$.

Definition

A connection on a \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \Omega_{D}^{1}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a)=\xi \otimes d a+\left(\nabla^{\mathcal{E}} \xi\right) a \quad \forall a \in \mathcal{A} \forall \xi \in \mathcal{E}
$$

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a twisted spectral triple.

σ-Connections over a Twisted Spectral Triple

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a twisted spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.

σ-Connections over a Twisted Spectral Triple

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a twisted spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.
- Space of twisted differential 1-forms:

$$
\Omega_{D, \sigma}^{1}(\mathcal{A})=\operatorname{Span}\left\{a d_{\sigma} b ; \quad a, b \in \mathcal{A}\right\} \subset \mathcal{L}(\mathcal{H})
$$

where $d_{\sigma} b:=[D, b]_{\sigma}=D b-\sigma(b) D$.

σ-Connections over a Twisted Spectral Triple

Setup/Notation

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is a twisted spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A}.
- Space of twisted differential 1-forms:

$$
\Omega_{D, \sigma}^{1}(\mathcal{A})=\operatorname{Span}\left\{a d_{\sigma} b ; a, b \in \mathcal{A}\right\} \subset \mathcal{L}(\mathcal{H})
$$

where $d_{\sigma} b:=[D, b]_{\sigma}=D b-\sigma(b) D$.

Definition

A σ-translate of \mathcal{E} is a finitely generated projective module \mathcal{E}^{σ} together with a linear isomorphism $\sigma^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma}$ such that

$$
\sigma^{\mathcal{E}}(\xi a)=\sigma^{\mathcal{E}}(\xi) \sigma(a) \quad \forall \xi \in \mathcal{E} \forall a \in \mathcal{A} .
$$

σ-Connections

Definition (RP+HW)

A σ-connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega_{D, \sigma}^{1}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a)=\sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma} a+\left(\nabla^{\mathcal{E}} \xi\right) a \quad \forall a \in \mathcal{A} \forall \xi \in \mathcal{E}
$$

Definition (RP+HW)

A σ-connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega_{D, \sigma}^{1}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a)=\sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma} a+\left(\nabla^{\mathcal{E}} \xi\right) a \quad \forall a \in \mathcal{A} \forall \xi \in \mathcal{E}
$$

Example

If $\mathcal{E}=e \mathcal{A}^{q}$ with $e=e^{2} \in M_{q}(\mathcal{A})$, then

Definition (RP+HW)

A σ-connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega_{D, \sigma}^{1}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a)=\sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma} a+\left(\nabla^{\mathcal{E}} \xi\right) a \quad \forall a \in \mathcal{A} \forall \xi \in \mathcal{E}
$$

Example

If $\mathcal{E}=e \mathcal{A}^{q}$ with $e=e^{2} \in M_{q}(\mathcal{A})$, then
(1) $\mathcal{E}^{\sigma}=\sigma(e) \mathcal{A}^{q}$ is a σ-translate.

Definition (RP+HW)

A σ-connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega_{D, \sigma}^{1}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a)=\sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma} a+\left(\nabla^{\mathcal{E}} \xi\right) a \quad \forall a \in \mathcal{A} \forall \xi \in \mathcal{E}
$$

Example

If $\mathcal{E}=e \mathcal{A}^{q}$ with $e=e^{2} \in M_{q}(\mathcal{A})$, then
(1) $\mathcal{E}^{\sigma}=\sigma(e) \mathcal{A}^{q}$ is a σ-translate.
(2) It is equipped with the Grassmanian σ-connection,

$$
\nabla_{0}^{\mathcal{E}}=(\sigma(e) \otimes 1) d_{\sigma} .
$$

Coupling with σ-connections

Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on \mathcal{E} defines a coupled operator,

$$
D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}
$$

Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on \mathcal{E} defines a coupled operator,

$$
D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}
$$

of the form,

$$
D_{\nabla^{\mathcal{E}}}=\left(\begin{array}{cc}
0 & D_{\nabla^{\mathcal{E}}}^{-} \\
D_{\nabla^{\mathcal{E}}}^{+} & 0
\end{array}\right)
$$

where $D_{\nabla^{\mathcal{E}}}^{ \pm}: \mathcal{E} \otimes \operatorname{dom} D^{ \pm} \rightarrow \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on \mathcal{E} defines a coupled operator,

$$
D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}
$$

of the form,

$$
D_{\nabla^{\mathcal{E}}}=\left(\begin{array}{cc}
0 & D_{\nabla^{\mathcal{E}}}^{-} \\
D_{\nabla^{\mathcal{E}}}^{+} & 0
\end{array}\right)
$$

where $D_{\nabla^{\mathcal{E}}}^{ \pm}: \mathcal{E} \otimes \operatorname{dom} D^{ \pm} \rightarrow \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $\left(C^{\infty}(M), L_{g}^{2}(M), \$, \not \varnothing_{g}\right)$ and $\mathcal{E}=C^{\infty}(M, E)$, it can be shown that

Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on \mathcal{E} defines a coupled operator,

$$
D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}
$$

of the form,

$$
D_{\nabla^{\mathcal{E}}}=\left(\begin{array}{cc}
0 & D_{\nabla^{\mathcal{E}}}^{-} \\
D_{\nabla^{\mathcal{E}}}^{+} & 0
\end{array}\right)
$$

where $D_{\nabla^{\mathcal{E}}}^{ \pm}: \mathcal{E} \otimes \operatorname{dom} D^{ \pm} \rightarrow \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $\left(C^{\infty}(M), L_{g}^{2}(M), \$, D_{g}\right)$ and $\mathcal{E}=C^{\infty}(M, E)$, it can be shown that
(1) Any connection ∇^{E} on E defines a connection on \mathcal{E}.

Coupling with σ-connections

Proposition (RP+HW)

The datum of σ-connection on \mathcal{E} defines a coupled operator,

$$
D_{\nabla^{\varepsilon}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \rightarrow \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}
$$

of the form,

$$
D_{\nabla^{\mathcal{E}}}=\left(\begin{array}{cc}
0 & D_{\nabla^{\mathcal{E}}}^{-} \\
D_{\nabla^{\mathcal{E}}}^{+} & 0
\end{array}\right)
$$

where $D_{\nabla^{\mathcal{E}}}^{ \pm}: \mathcal{E} \otimes \operatorname{dom} D^{ \pm} \rightarrow \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}$ are Fredholm operators.

Example

For a Dirac spectral triple $\left(C^{\infty}(M), L_{g}^{2}(M), \$, D_{g}\right)$ and $\mathcal{E}=C^{\infty}(M, E)$, it can be shown that
(1) Any connection ∇^{E} on E defines a connection on \mathcal{E}.
(2) The corresponding coupled operator agrees with $\square_{\nabla^{E}}$.

Index Map

Definition
The index of $D_{\nabla^{\mathcal{E}}}$ is

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{+}-\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{-}\right) .
$$

Index Map
Definition
The index of $D_{\nabla^{\mathcal{E}}}$ is
ind $D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\right.$ ind $D_{\nabla^{\mathcal{E}}}^{+}-$ind $\left.D_{\nabla^{\mathcal{E}}}^{-}\right)$.
where ind $D_{\nabla^{\mathcal{E}}}^{ \pm}=\operatorname{dim} \operatorname{ker} D_{\nabla^{\mathcal{E}}}^{ \pm}-\operatorname{dim} \operatorname{coker} D_{\nabla \mathcal{E}}^{ \pm}$.

Index Map

Definition

The index of $D_{\nabla \mathcal{E}}$ is

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\text { ind } D_{\nabla^{\mathcal{E}}}^{+}-\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{-}\right) .
$$

where ind $D_{\nabla}^{ \pm} \mathcal{E}=\operatorname{dim} \operatorname{ker} D_{\nabla^{\mathcal{E}}}^{ \pm}-\operatorname{dim} \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{ \pm}$.

Remark

When $\sigma=\mathrm{id}$, and in all the main examples with $\sigma \neq \mathrm{id}$, we have

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\text { ind } D_{\nabla^{\mathcal{E}}}^{+}
$$

Index Map

Definition

The index of $D_{\nabla \mathcal{E}}$ is

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\text { ind } D_{\nabla^{\mathcal{E}}}^{+}-\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{-}\right) .
$$

where ind $D_{\nabla}^{ \pm} \varepsilon=\operatorname{dim} \operatorname{ker} D_{\nabla^{\varepsilon}}^{ \pm}-\operatorname{dim} \operatorname{coker} D_{\nabla^{\varepsilon}}^{ \pm}$.
Remark
When $\sigma=\mathrm{id}$, and in all the main examples with $\sigma \neq \mathrm{id}$, we have

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\text { ind } D_{\nabla^{\mathcal{E}}}^{+}
$$

Proposition (Connes-Moscovici, RP + HW)

Index Map

Definition

The index of $D_{\nabla \mathcal{E}}$ is

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\text { ind } D_{\nabla^{\mathcal{E}}}^{+}-\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{-}\right) .
$$

where ind $D_{\nabla}^{ \pm} \varepsilon=\operatorname{dim} \operatorname{ker} D_{\nabla^{\varepsilon}}^{ \pm}-\operatorname{dim} \operatorname{coker} D_{\nabla^{\varepsilon}}^{ \pm}$.

Remark

When $\sigma=$ id, and in all the main examples with $\sigma \neq \mathrm{id}$, we have

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{+}
$$

Proposition (Connes-Moscovici, RP + HW)

(1) ind $D_{\nabla^{\varepsilon}}$ depends only on the K-theory class of \mathcal{E}.

Index Map

Definition

The index of $D_{\nabla^{\mathcal{E}}}$ is

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\frac{1}{2}\left(\text { ind } D_{\nabla^{\mathcal{E}}}^{+}-\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{-}\right) .
$$

where ind $D_{\nabla}^{ \pm} \varepsilon=\operatorname{dim} \operatorname{ker} D_{\nabla^{\varepsilon}}^{ \pm}-\operatorname{dim} \operatorname{coker} D_{\nabla^{\varepsilon}}^{ \pm}$.

Remark

When $\sigma=$ id, and in all the main examples with $\sigma \neq \mathrm{id}$, we have

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\text { ind } D_{\nabla^{\mathcal{E}}}^{+}
$$

Proposition (Connes-Moscovici, RP + HW)

(1) ind $D_{\nabla^{\varepsilon}}$ depends only on the K-theory class of \mathcal{E}.
(2) There is a unique additive map $\operatorname{ind}_{D, \sigma}: K_{0}(\mathcal{A}) \rightarrow \frac{1}{2} \mathbb{Z}$ so that

$$
\operatorname{ind}_{D}[\mathcal{E}]=\operatorname{ind} D_{\nabla^{\mathcal{E}}} \quad \forall\left(\mathcal{E}, \nabla^{\mathcal{E}}\right)
$$

Connes-Chern Character

Connes-Chern Character

Lemma (RP+HW)
Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$.

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$.

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable.

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$, called Connes-Chern character,

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$, called Connes-Chern character, such that

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\left\langle\operatorname{Ch}(D)_{\sigma}, \operatorname{Ch}(\mathcal{E})\right\rangle \quad \forall\left(\mathcal{E}, \nabla^{\mathcal{E}}\right)
$$

Connes-Chern Character

Lemma (RP+HW)

Suppose that $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr}|D|^{-p}<\infty$ for some $p \geq 1$. Assume further that D is invertible and $\mathcal{E}=e \mathcal{A}^{q}$, $e^{2}=e \in M_{q}(\mathcal{A})$. Then, for all $k \geq \frac{1}{2} p$,

$$
\text { ind } D_{\nabla^{\varepsilon}}=\frac{1}{2} \operatorname{Tr}\left\{\gamma\left(D^{-1}[D, e]_{\sigma}\right)^{2 k}\right\}
$$

where $\gamma=\mathrm{id}_{\mathcal{H}^{+}}-\mathrm{id}_{\mathcal{H}^{-}}$.

Theorem (Connes-Moscovici, RP+HW)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable. Then there is an even periodic cyclic class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$, called Connes-Chern character, such that

$$
\text { ind } D_{\nabla^{\mathcal{E}}}=\left\langle\operatorname{Ch}(D)_{\sigma}, \operatorname{Ch}(\mathcal{E})\right\rangle \quad \forall\left(\mathcal{E}, \nabla^{\mathcal{E}}\right)
$$

where $\operatorname{Ch}(\mathcal{E})$ is the Chern character in periodic cyclic homology.

Conformal Dirac Spectral Triple

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).
(2) \mathcal{C} is a conformal structure on M.

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).
(2) \mathcal{C} is a conformal structure on M.
(3) G is a group of conformal diffeomorphisms preserving \mathcal{C}.

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).
(2) \mathcal{C} is a conformal structure on M.
(3) G is a group of conformal diffeomorphisms preserving \mathcal{C}. Thus, given any metric $g \in \mathcal{C}$ and $\phi \in G$,

$$
\phi_{*} g=k_{\phi}^{-2} g \text { with } k_{\phi} \in C^{\infty}(M), k_{\phi}>0 .
$$

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).
(2) \mathcal{C} is a conformal structure on M.
(3) G is a group of conformal diffeomorphisms preserving \mathcal{C}. Thus, given any metric $g \in \mathcal{C}$ and $\phi \in G$,

$$
\phi_{*} g=k_{\phi}^{-2} g \text { with } k_{\phi} \in C^{\infty}(M), k_{\phi}>0 .
$$

(9) $C^{\infty}(M) \rtimes G$ is the crossed-product algebra, i.e.,

$$
\begin{aligned}
& C^{\infty}(M) \rtimes G=\left\{\sum f_{\phi} u_{\phi} ; f_{\phi} \in C_{c}^{\infty}(M)\right\}, \\
& u_{\phi}^{*}=u_{\phi}^{-1}=u_{\phi^{-1}}, \quad u_{\phi} f=\left(f \circ \phi^{-1}\right) u_{\phi} .
\end{aligned}
$$

Conformal Dirac Spectral Triple

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \$) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$) .
$$

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \$) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$) .
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} \Phi_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} \Phi_{g} \sqrt{k_{\phi}} .
$$

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \mathbb{S}) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$)
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} D_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}}
$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not D_{g}\right)_{\sigma_{g}}$ given by

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \mathbb{S}) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$)
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} D_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}}
$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not D_{g}\right)_{\sigma_{g}}$ given by
(1) The Dirac operator \rrbracket_{g} associated to g.

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \$) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$)
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} D_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}} .
$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not D_{g}\right)_{\sigma_{g}}$ given by
(1) The Dirac operator \mathbb{D}_{g} associated to g.
(2) The representation $f u_{\phi} \rightarrow f U_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L_{g}^{2}(M, S)$.

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, \$) \rightarrow L_{g}^{2}(M, \$)$ by

$$
U_{\phi} \xi=k_{\phi}^{-\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \$) .
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} \Phi_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} \Phi_{g} \sqrt{k_{\phi}} .
$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), D_{g}\right)_{\sigma_{g}}$ given by
(1) The Dirac operator \mathbb{D}_{g} associated to g.
(2) The representation $f u_{\phi} \rightarrow f U_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L_{g}^{2}(M, \$)$.
(3) The automorphism $\sigma_{g}\left(f u_{\phi}\right):=k_{\phi}^{-1} f u_{\phi}$.

Conformal Connes-Chern Character

Conformal Connes-Chern Character

Theorem (RP+HW)

(1) The Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}} \in \mathrm{HP}^{0}\left(\mathrm{C}^{\infty}(M) \rtimes G\right)$ is an invariant of the conformal class \mathcal{C}.

Conformal Connes-Chern Character

Theorem (RP + HW)

(1) The Connes-Chern character $\mathrm{Ch}\left(D_{g}\right)_{\sigma_{g}} \in \mathrm{HP}^{0}\left(C^{\infty}(M) \rtimes G\right)$ is an invariant of the conformal class \mathcal{C}.
(2. For any even cyclic homology class $\eta \in \mathrm{HP}_{0}\left(C^{\infty}(M) \rtimes G\right)$, the pairing,

$$
\left\langle\operatorname{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}, \eta\right\rangle
$$

is a scalar conformal invariant.

Conformal Connes-Chern Character

Theorem (RP+HW)

(1) The Connes-Chern character $\mathrm{Ch}\left(D_{g}\right)_{\sigma_{g}} \in \mathrm{HP}^{0}\left(C^{\infty}(M) \rtimes G\right)$ is an invariant of the conformal class \mathcal{C}.
(2) For any even cyclic homology class $\eta \in \mathrm{HP}_{0}\left(C^{\infty}(M) \rtimes G\right)$, the pairing,

$$
\left\langle\operatorname{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}, \eta\right\rangle
$$

is a scalar conformal invariant.

Definition

The conformal Connes-Chern character $\mathrm{Ch}(\mathcal{C}) \in \mathrm{HP}^{0}\left(C^{\infty}(M) \rtimes G\right)$ is the Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}$ for any metric $g \in \mathcal{C}$.

Computation of $\mathrm{Ch}(\mathcal{C})$

Computation of $\mathrm{Ch}(\mathrm{C})$

Proposition (Ferrand-Obata)

If the conformal structure \mathcal{C} is non-flat, then \mathcal{C} contains a G-invariant metric.

Computation of $\mathrm{Ch}(\mathcal{C})$

Proposition (Ferrand-Obata)

If the conformal structure \mathcal{C} is non-flat, then \mathcal{C} contains a G-invariant metric.

Fact

If $g \in \mathcal{C}$ is G-invariant, then $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not \varnothing_{g}\right)_{\sigma_{g}}$ is an ordinary spectral triple (i.e., $\sigma_{g}=1$).

Computation of $\mathrm{Ch}(\mathcal{C})$

Proposition (Ferrand-Obata)

If the conformal structure \mathcal{C} is non-flat, then \mathcal{C} contains a G-invariant metric.

Fact

If $g \in \mathcal{C}$ is G-invariant, then $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not \varnothing_{g}\right)_{\sigma_{g}}$ is an ordinary spectral triple (i.e., $\sigma_{g}=1$).

Consequence

When \mathcal{C} is non-flat, we are reduced to the computation of the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not \varnothing_{g}\right)$, where G is a group of isometries.

Computation of $\mathrm{Ch}(\mathcal{C})$

Remark

Computation of $\mathrm{Ch}(\mathcal{C})$

Remark

(1) When G is a group of isometries, the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), D_{g}\right)$ is represented by the CM cocycle.

Computation of $\mathrm{Ch}(\mathcal{C})$

Remark

(1) When G is a group of isometries, the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \varnothing_{g}\right)$ is represented by the CM cocycle.
(2) The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.

Computation of $\mathrm{Ch}(\mathcal{C})$

Remark

(1) When G is a group of isometries, the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \varnothing_{g}\right)$ is represented by the CM cocycle.
(2) The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.
(3) We produce a new proof of LEIT that allows us to compute the CM cocyle in the same shot.

Computation of $\mathrm{Ch}(\mathcal{C})$

Remark

(1) When G is a group of isometries, the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), D_{g}\right)$ is represented by the CM cocycle.
(2) The computation of the CM cocycle amounts to get a "differentiable version" of the local equivariant index theorem (LEIT) of Donnelly-Patodi, Gilkey and Kawasaki.
(3) We produce a new proof of LEIT that allows us to compute the CM cocyle in the same shot.
(4) This approach was various other applications (equivariant JLO cocycle, equivariant eta cochain, Yong Wang's papers).

Local Index Formula in Conformal Geometry

Setup

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

- M^{ϕ} is the fixed-point set of ϕ;

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

- M^{ϕ} is the fixed-point set of ϕ; this is a disconnected sums of submanifolds, $M^{\phi}=\bigsqcup M_{a}^{\phi}, \quad \operatorname{dim} M_{a}^{\phi}=a$.

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

- M^{ϕ} is the fixed-point set of ϕ; this is a disconnected sums of submanifolds, $M^{\phi}=\bigsqcup M_{a}^{\phi}, \quad \operatorname{dim} M_{a}^{\phi}=a$.
- $\mathcal{N}^{\phi}=\left(T M^{\phi}\right)^{\perp}$ is the normal bundle (vector bundle over $\left.M^{\phi}\right)$.

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

- M^{ϕ} is the fixed-point set of ϕ; this is a disconnected sums of submanifolds, $M^{\phi}=\bigsqcup M_{a}^{\phi}, \quad \operatorname{dim} M_{a}^{\phi}=a$.
- $\mathcal{N}^{\phi}=\left(T M^{\phi}\right)^{\perp}$ is the normal bundle (vector bundle over $\left.M^{\phi}\right)$.
- Over M^{ϕ}, with respect to $T M_{\mid M^{\phi}}=T M^{\phi} \oplus \mathcal{N}^{\phi}$, there are decompositions,

$$
\phi^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & \phi_{\mid \mathcal{N}^{\phi}}^{\prime}
\end{array}\right), \quad \nabla^{T M}=\nabla^{T M^{\phi}} \oplus \nabla^{\mathcal{N}^{\phi}}
$$

Local Index Formula in Conformal Geometry

Local Index Formula in Conformal Geometry

Theorem $(\mathrm{RP}+\mathrm{HW})$
For any G-invariant metric $g \in \mathcal{C}$,

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in \mathcal{C}$, the conformal Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}$ is represented by the periodic cyclic cocycle $\varphi=\left(\varphi_{2 m}\right)$ given by

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in \mathcal{C}$, the conformal Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}$ is represented by the periodic cyclic cocycle $\varphi=\left(\varphi_{2 m}\right)$ given by

$$
\begin{aligned}
& \quad \varphi_{2 m}\left(f^{0} U_{\phi_{0}}, \cdots, f^{2 m} U_{\phi_{2 m}}\right)= \\
& \frac{(-i)^{\frac{n}{2}}}{(2 m)!} \sum_{a}(2 \pi)^{-\frac{a}{2}} \int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{2 m},
\end{aligned}
$$

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in \mathcal{C}$, the conformal Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}$ is represented by the periodic cyclic cocycle $\varphi=\left(\varphi_{2 m}\right)$ given by

$$
\begin{aligned}
& \quad \varphi_{2 m}\left(f^{0} U_{\phi_{0}}, \cdots, f^{2 m} U_{\phi_{2 m}}\right)= \\
& \frac{(-i)^{\frac{n}{2}}}{(2 m)!} \sum_{a}(2 \pi)^{-\frac{a}{2}} \int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{2 m},
\end{aligned}
$$

where $\phi:=\phi_{0} \circ \cdots \circ \phi_{2 m}$,

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in \mathcal{C}$, the conformal Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}$ is represented by the periodic cyclic cocycle $\varphi=\left(\varphi_{2 m}\right)$ given by

$$
\begin{aligned}
& \quad \varphi_{2 m}\left(f^{0} U_{\phi_{0}}, \cdots, f^{2 m} U_{\phi_{2 m}}\right)= \\
& \frac{(-i)^{\frac{n}{2}}}{(2 m)!} \sum_{a}(2 \pi)^{-\frac{a}{2}} \int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{2 m},
\end{aligned}
$$

where $\phi:=\phi_{0} \circ \cdots \circ \phi_{2 m}$, and $\tilde{f}^{j}:=f^{j} \circ \phi_{0}^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$,

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in \mathcal{C}$, the conformal Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{\mathrm{g}}\right)_{\sigma_{g}}$ is represented by the periodic cyclic cocycle $\varphi=\left(\varphi_{2 m}\right)$ given by

$$
\begin{aligned}
& \quad \varphi_{2 m}\left(f^{0} U_{\phi_{0}}, \cdots, f^{2 m} U_{\phi_{2 m}}\right)= \\
& \frac{(-i)^{\frac{n}{2}}}{(2 m)!} \sum_{a}(2 \pi)^{-\frac{a}{2}} \int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{2 m}
\end{aligned}
$$

where $\phi:=\phi_{0} \circ \cdots \circ \phi_{2 m}$, and $\tilde{f}^{j}:=f^{j} \circ \phi_{0}^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$, and

$$
\begin{aligned}
& \hat{A}\left(R^{T M^{\phi}}\right):=\operatorname{det}^{\frac{1}{2}}\left[\frac{R^{T M^{\phi}} / 2}{\sinh \left(R^{T M^{\phi}} / 2\right)}\right] \\
& \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right):=\operatorname{det}^{-\frac{1}{2}}\left[1-\phi_{\mid N^{\phi}}^{\prime} e^{-R^{\mathcal{N}^{\phi}}}\right] .
\end{aligned}
$$

Local Index Formula in Conformal Geometry

Local Index Formula in Conformal Geometry

Remark

The n-th degree component is given by

$$
\varphi_{n}\left(f^{0} U_{\phi_{0}}, \cdots, f^{n} U_{\phi_{n}}\right)= \begin{cases}\int_{M} f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{n} & \text { if } \phi_{0} \circ \cdots \circ \phi_{n}=1 \\ 0 & \text { if } \phi_{0} \circ \cdots \circ \phi_{n} \neq 1\end{cases}
$$

Local Index Formula in Conformal Geometry

Remark

The n-th degree component is given by
$\varphi_{n}\left(f^{0} U_{\phi_{0}}, \cdots, f^{n} U_{\phi_{n}}\right)= \begin{cases}\int_{M} f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{n} & \text { if } \phi_{0} \circ \cdots \circ \phi_{n}=1, \\ 0 & \text { if } \phi_{0} \circ \cdots \circ \phi_{n} \neq 1 .\end{cases}$
This represents Connes' transverse fundamental class of M / G.

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)
Along the conjugation classes of G,

$$
H \mathrm{P}_{0}\left(C^{\infty}(M) \rtimes G\right) \simeq \bigoplus_{\langle\phi\rangle} \bigoplus_{a} H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right),
$$

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)
Along the conjugation classes of G,

$$
H \mathrm{P}_{0}\left(C^{\infty}(M) \rtimes G\right) \simeq \bigoplus_{\langle\phi\rangle} \bigoplus_{a} H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right),
$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$ is the $G^{\phi}{ }_{-}$-invariant even de Rham cohomology of M_{a}^{ϕ}.

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)
Along the conjugation classes of G,

$$
\mathrm{HP}_{0}\left(C^{\infty}(M) \rtimes G\right) \simeq \bigoplus \bigoplus H_{G^{\phi}}^{\mathrm{ev}}\left(M_{\mathrm{a}}^{\phi}\right)
$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$ is the G^{ϕ}-invariant even de Rham cohomology of M_{a}^{ϕ}.

Lemma

Any closed form $\omega \in \Omega_{G^{\phi}}^{\bullet}\left(M_{a}^{\phi}\right)$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)
Along the conjugation classes of G,

$$
\operatorname{HP}_{0}\left(C^{\infty}(M) \rtimes G\right) \simeq \bigoplus_{\langle\phi\rangle} \bigoplus_{a} H_{G^{\phi}}^{\mathrm{ev}}\left(M_{a}^{\phi}\right)
$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$ is the G^{ϕ}-invariant even de Rham cohomology of M_{a}^{ϕ}.

Lemma

Any closed form $\omega \in \Omega_{G^{\phi}}^{\bullet}\left(M_{a}^{\phi}\right)$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$ via the transformation,

$$
f^{0} d f^{1} \wedge \cdots \wedge d f^{k} \longrightarrow U_{\phi} \tilde{f}^{0} \otimes \tilde{f}^{1} \otimes \cdots \otimes \tilde{f}^{k}, \quad f^{j} \in C^{\infty}\left(M_{a}^{\phi}\right)^{G^{\phi}}
$$

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$
\operatorname{HP}_{0}\left(C^{\infty}(M) \rtimes G\right) \simeq \bigoplus_{\langle\phi\rangle} \bigoplus_{a} H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)
$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$ is the G^{ϕ}-invariant even de Rham cohomology of M_{a}^{ϕ}.

Lemma

Any closed form $\omega \in \Omega_{G^{\phi}}^{\bullet}\left(M_{a}^{\phi}\right)$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$ via the transformation,

$$
f^{0} d f^{1} \wedge \cdots \wedge d f^{k} \longrightarrow U_{\phi} \tilde{f}^{0} \otimes \tilde{f}^{1} \otimes \cdots \otimes \tilde{f}^{k}, \quad f^{j} \in C^{\infty}\left(M_{a}^{\phi}\right)^{G^{\phi}}
$$

where \tilde{f}^{j} is a G^{ϕ}-invariant smooth extension of f^{j} to M.

Conformal Invariants

Conformal Invariants

Theorem (RP+HW)
 Assume that the conformal structure \mathcal{C} is nonflat.

Conformal Invariants

Theorem (RP+HW)
Assume that the conformal structure \mathcal{C} is nonflat. Then

Conformal Invariants

Theorem (RP+HW)

Assume that the conformal structure \mathcal{C} is nonflat. Then
(1) For any closed even form $\omega \in \Omega_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$, the pairing $\left\langle\mathrm{Ch}(\mathcal{C}), \eta_{\omega}\right\rangle$ is a conformal invariant.

Conformal Invariants

Theorem (RP+HW)

Assume that the conformal structure \mathcal{C} is nonflat. Then
(1) For any closed even form $\omega \in \Omega_{G^{\phi}}^{e v}\left(M_{a}^{\phi}\right)$, the pairing $\left\langle\mathrm{Ch}(\mathcal{C}), \eta_{\omega}\right\rangle$ is a conformal invariant.
(2) For any G-invariant metric $g \in \mathcal{C}$, we have

$$
\left\langle\mathrm{Ch}(\mathcal{C}), \eta_{\omega}\right\rangle=\int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge \omega
$$

Conformal Invariants

Theorem (RP+HW)

Assume that the conformal structure \mathcal{C} is nonflat. Then
(1) For any closed even form $\omega \in \Omega_{G \phi}^{e v}\left(M_{a}^{\phi}\right)$, the pairing $\left\langle\mathrm{Ch}(\mathcal{C}), \eta_{\omega}\right\rangle$ is a conformal invariant.
(2) For any G-invariant metric $g \in \mathcal{C}$, we have

$$
\left\langle\mathrm{Ch}(\mathcal{C}), \eta_{\omega}\right\rangle=\int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge \omega
$$

Remark

The above invariants are not the type of conformal invariants appearing in the Deser-Schwimmer conjecture solved by Spyros Alexakis in 2007 (about 600 pages).

